

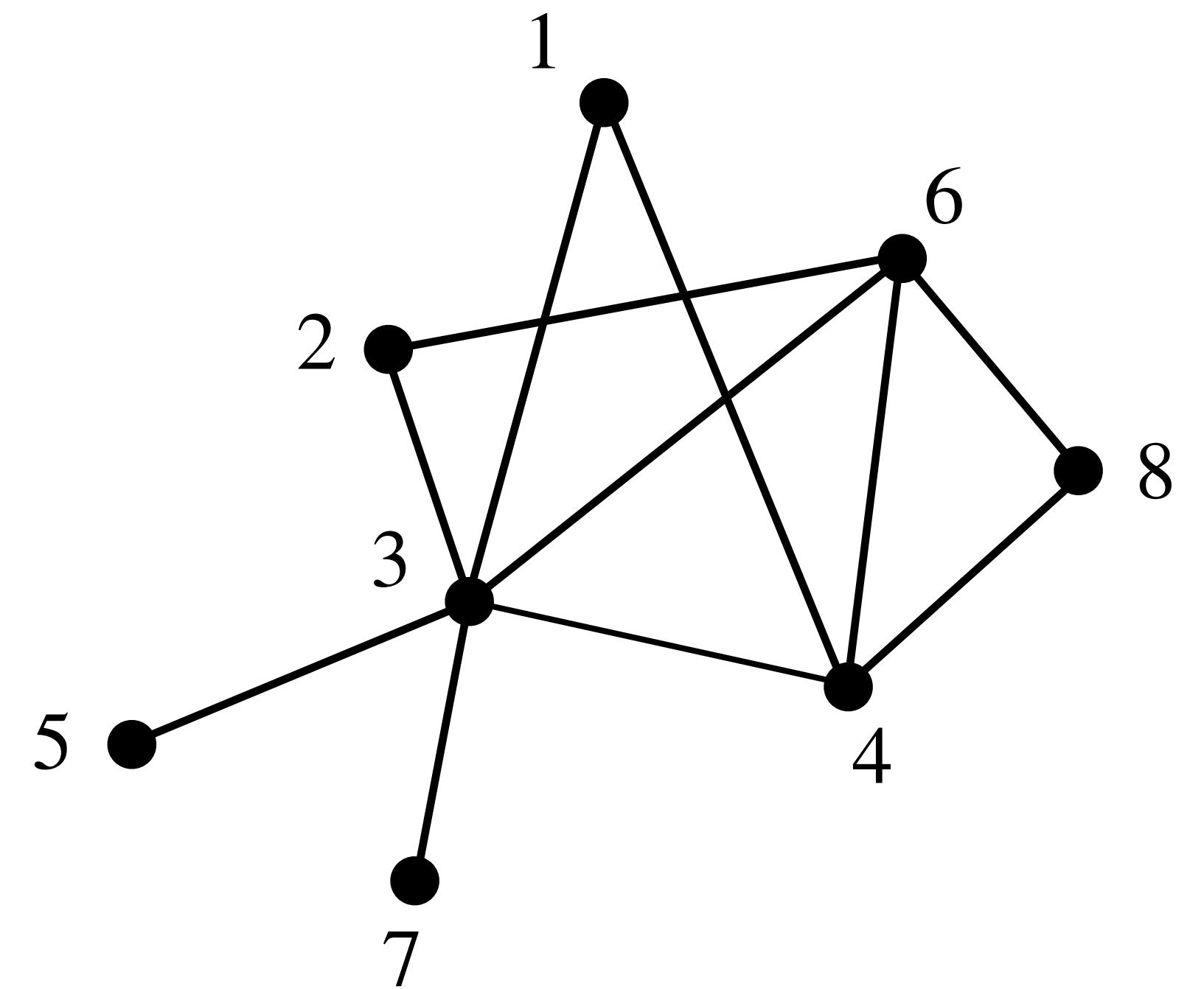
Lecture 20

Bipartite Maximum Matching

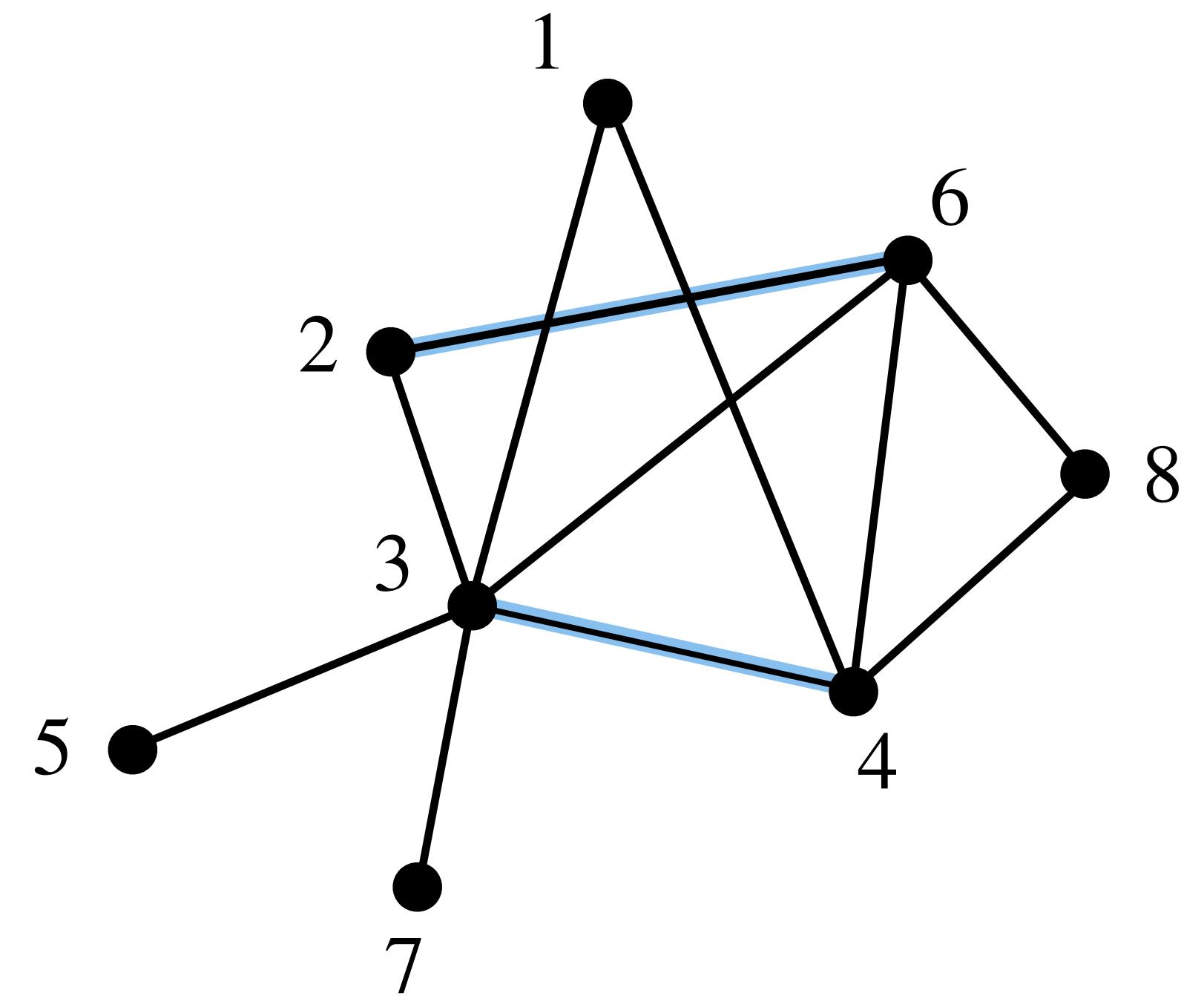
Source: Introduction to Algorithms, CLRS and Kleinberg & Tardos

Matching

Matching

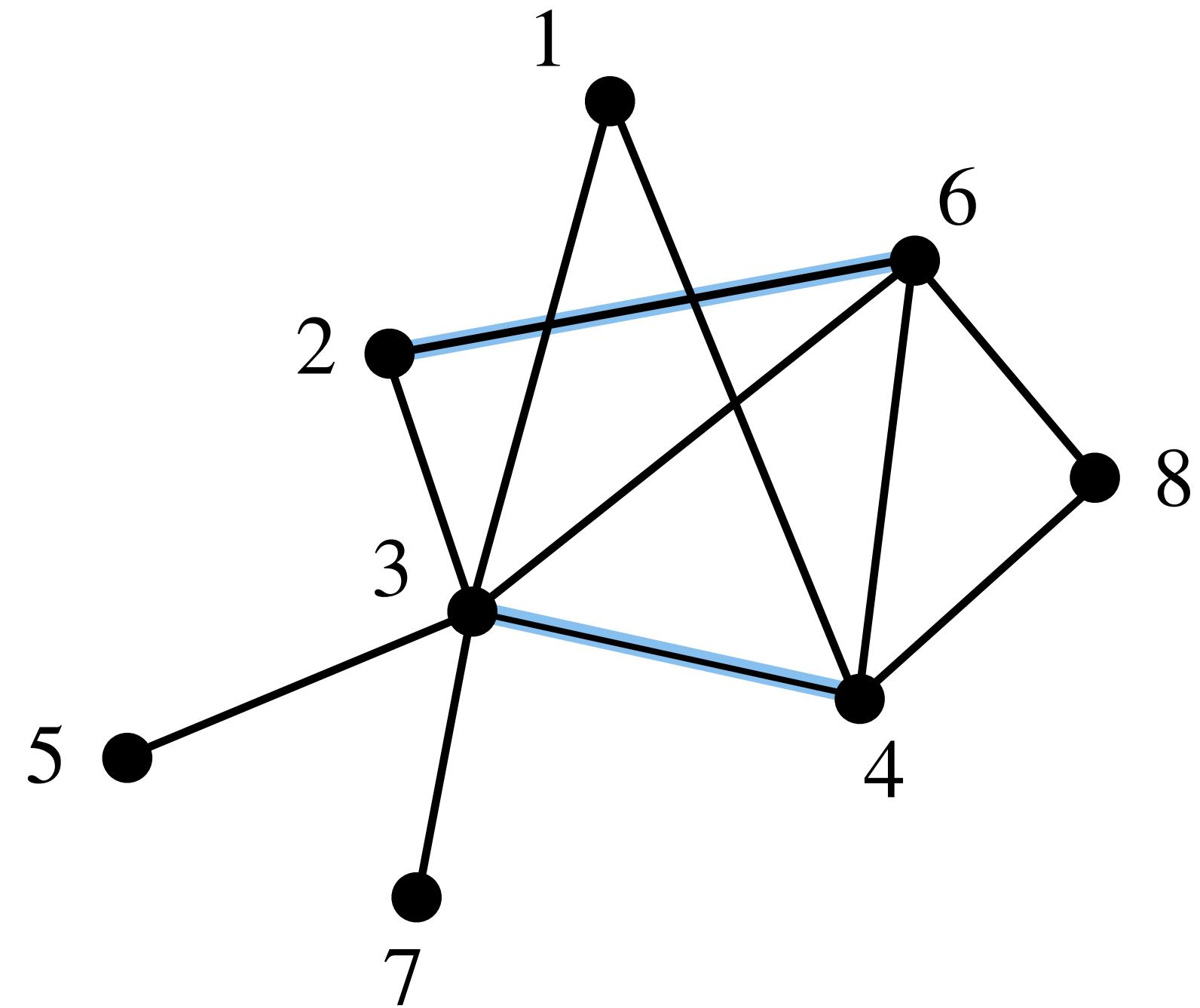


Matching



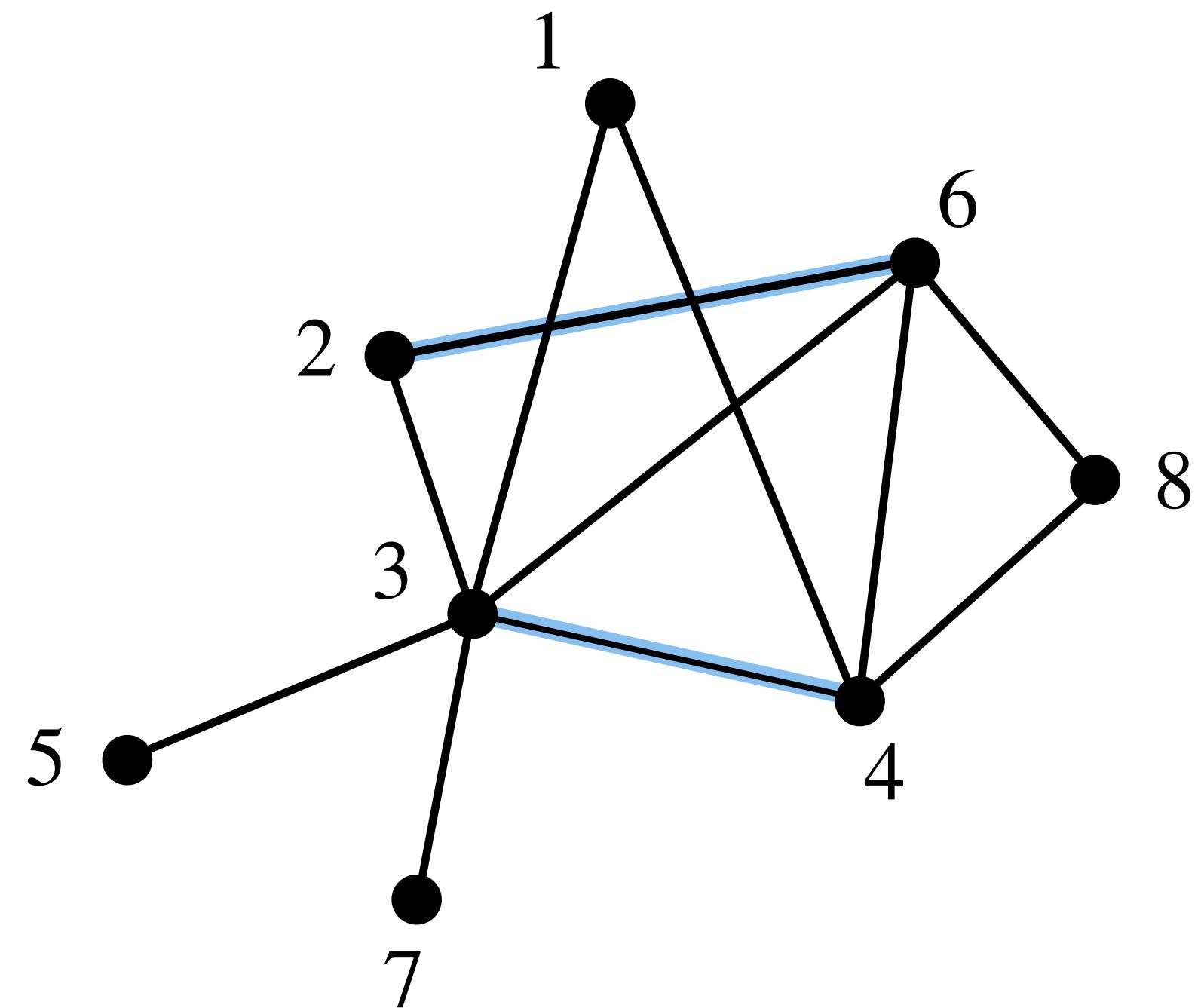
Matching

Defn: A **matching** in an undirected graph $G = (V, E)$ is a subset $M \subseteq E$ so that no two edges in



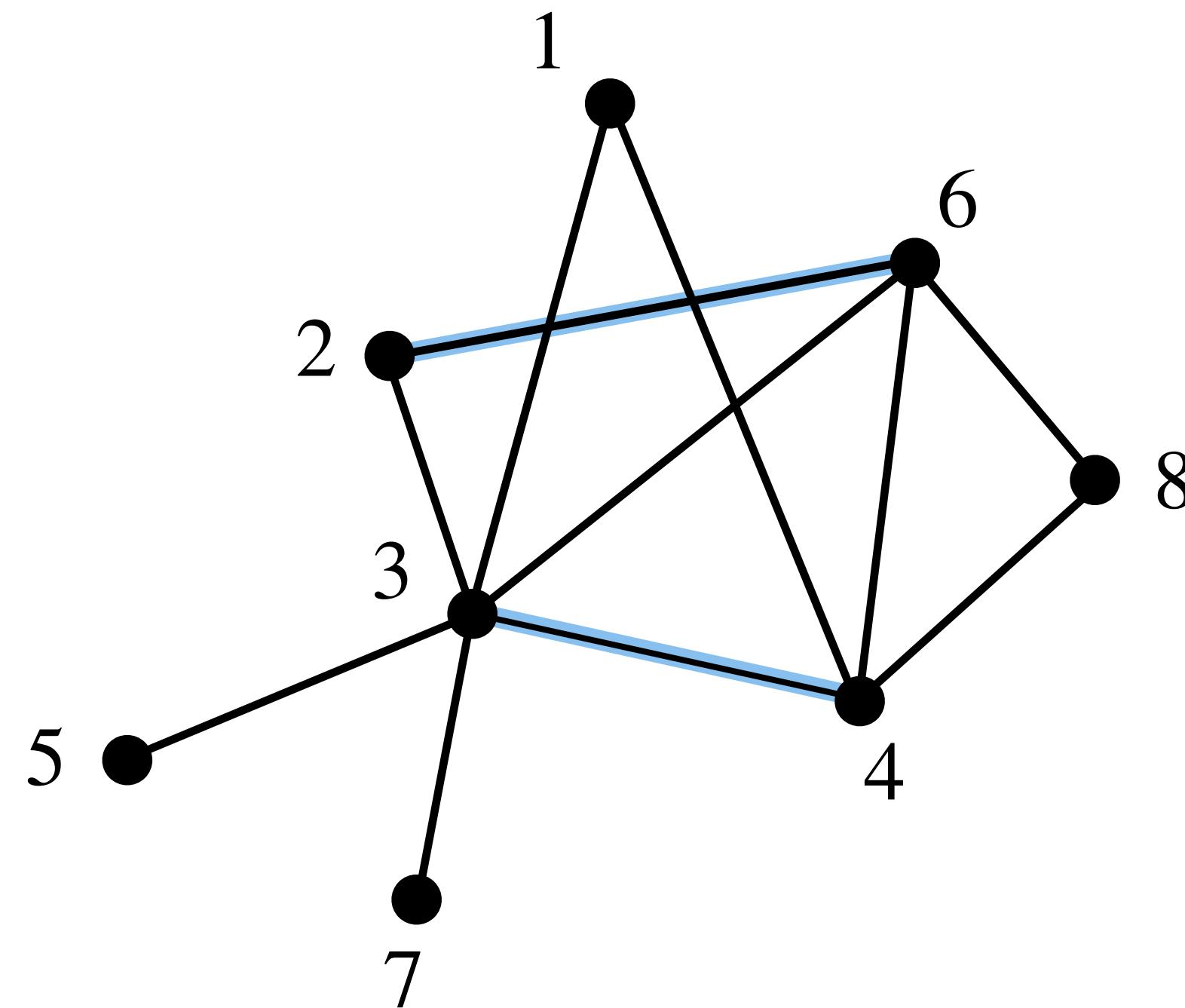
Matching

Defn: A **matching** in an undirected graph $G = (V, E)$ is a subset $M \subseteq E$ so that no two edges in M are incident with a common vertex.



Matching

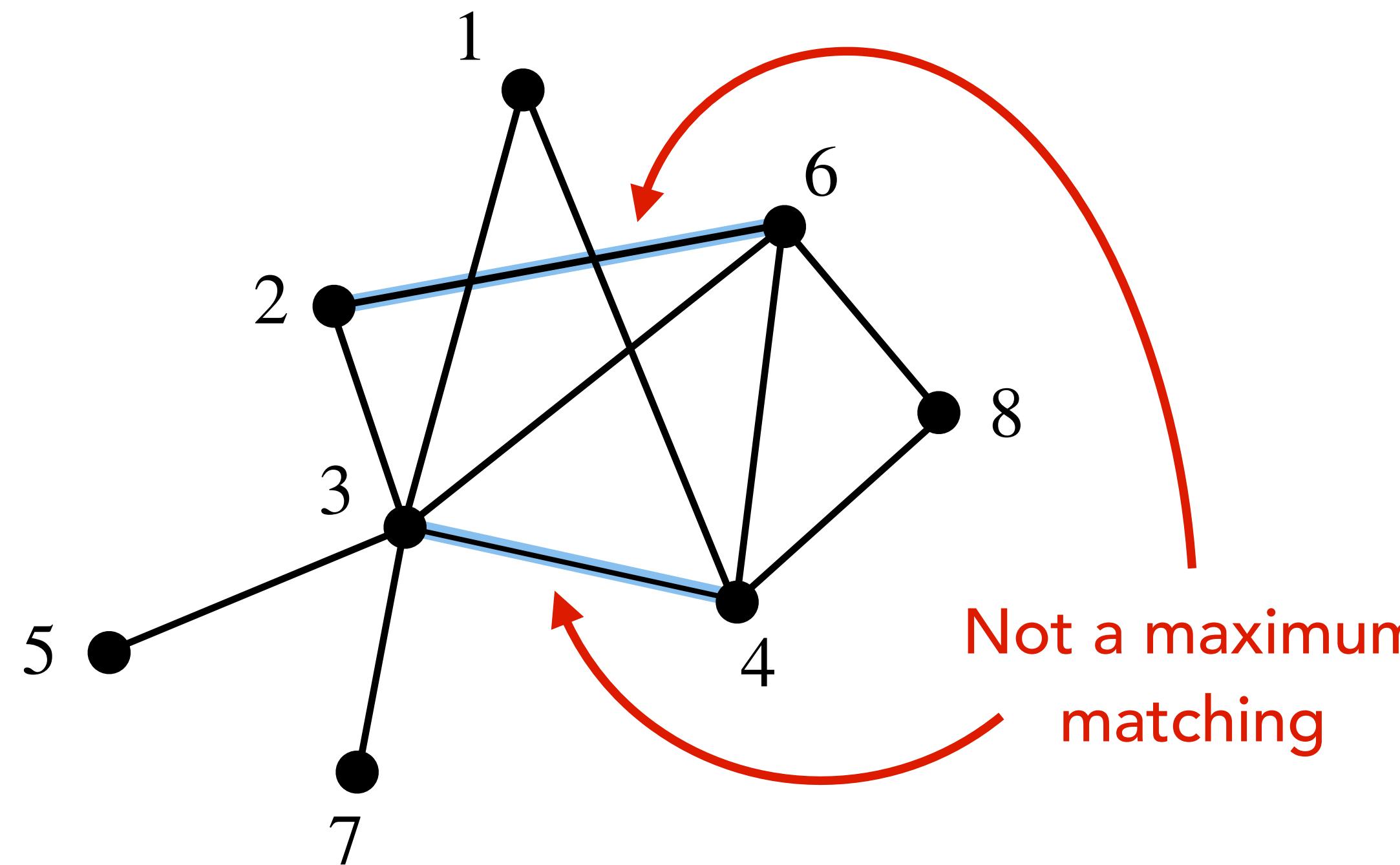
Defn: A **matching** in an undirected graph $G = (V, E)$ is a subset $M \subseteq E$ so that no two edges in M are incident with a common vertex.



Defn: A matching M is **maximum** if there is no matching M' such that $|M| < |M'|$.

Matching

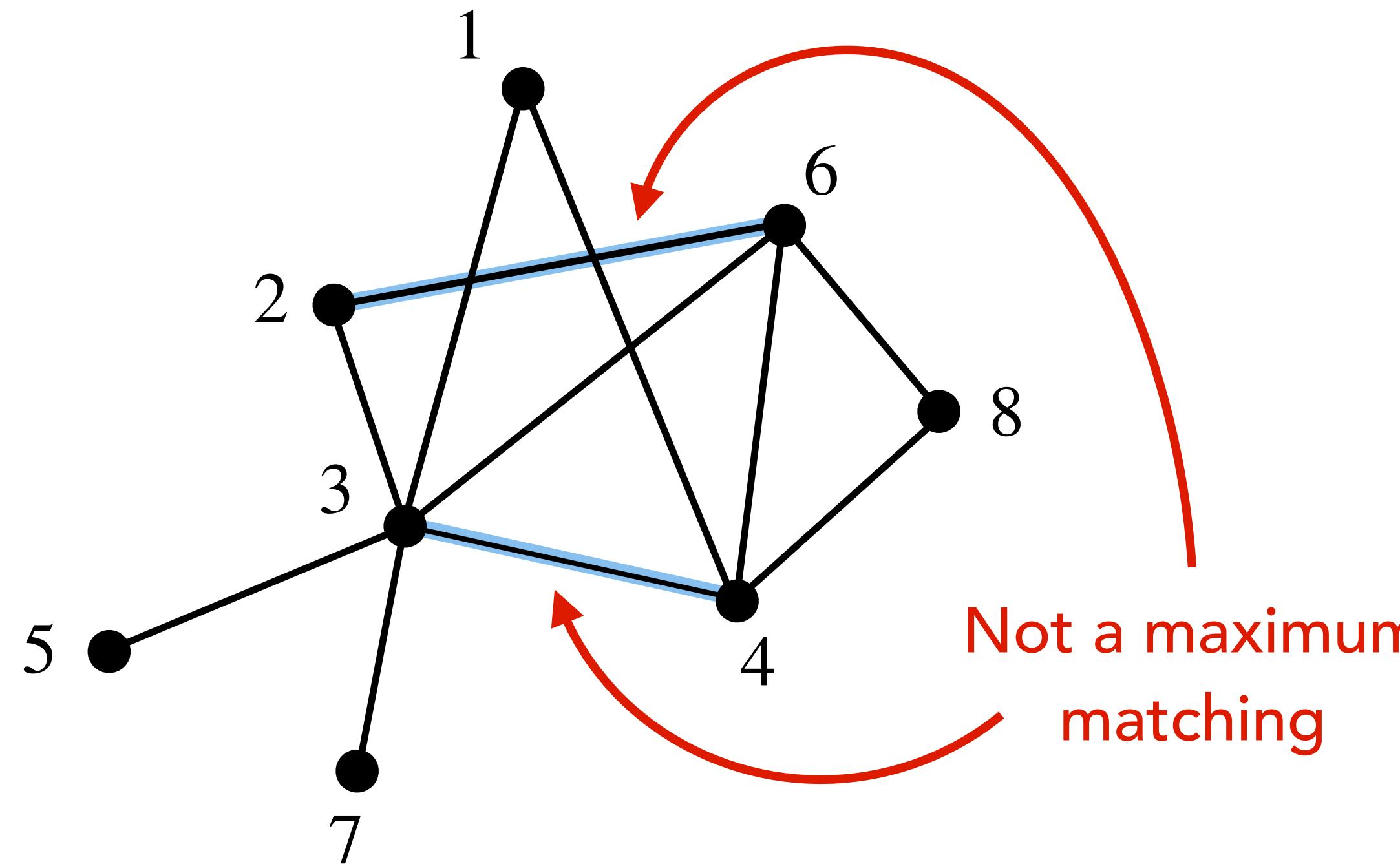
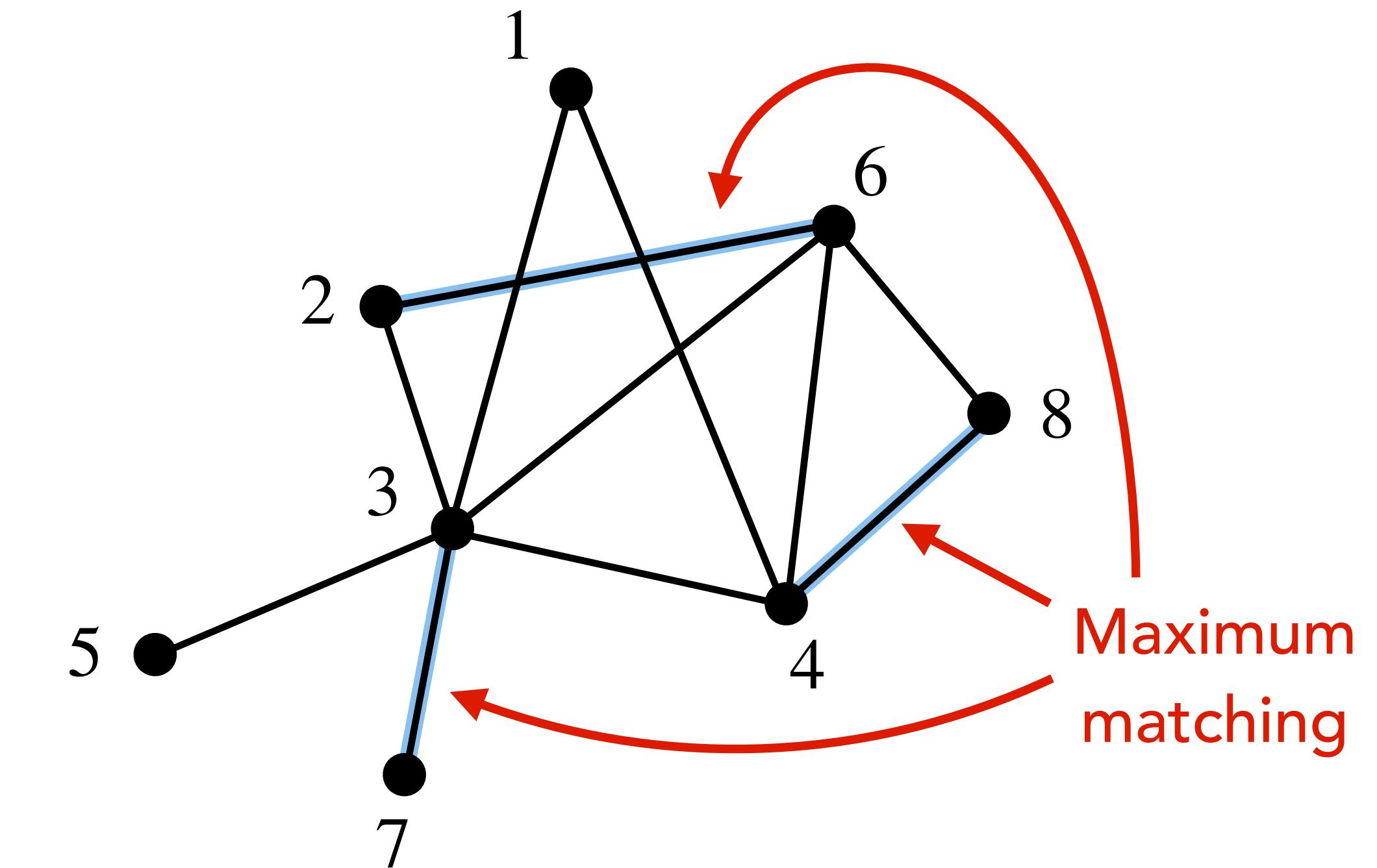
Defn: A **matching** in an undirected graph $G = (V, E)$ is a subset $M \subseteq E$ so that no two edges in M are incident with a common vertex.



Defn: A matching M is **maximum** if there is no matching M' such that $|M| < |M'|$.

Matching

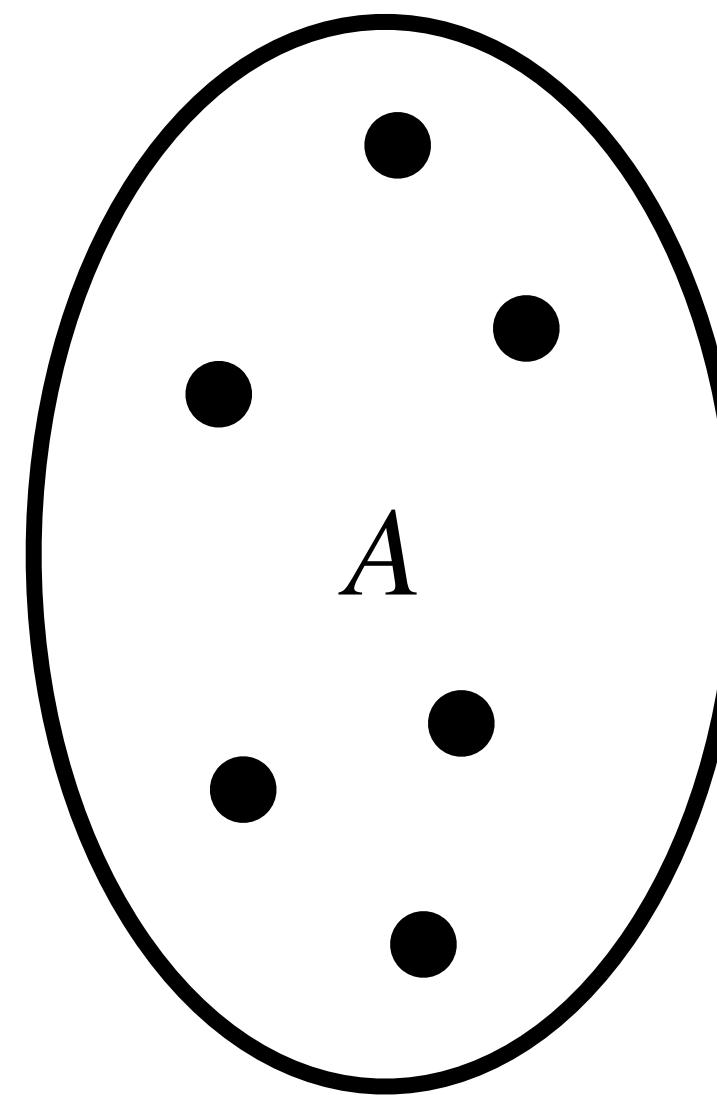
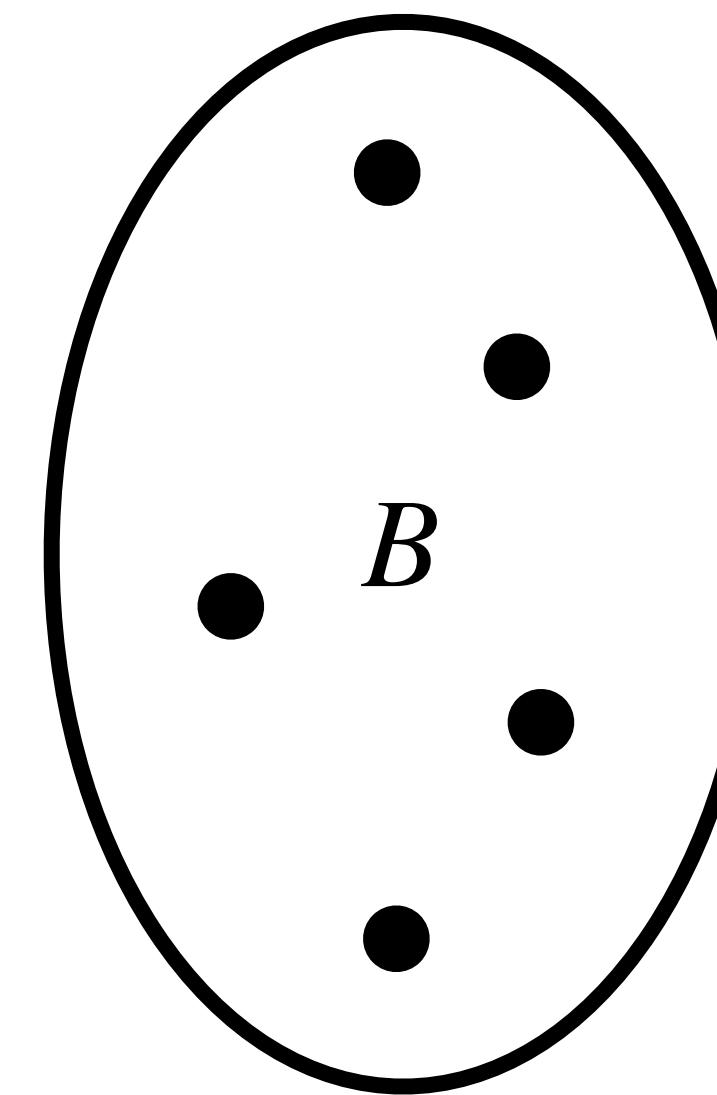
Defn: A **matching** in an undirected graph $G = (V, E)$ is a subset $M \subseteq E$ so that no two edges in M are incident with a common vertex.



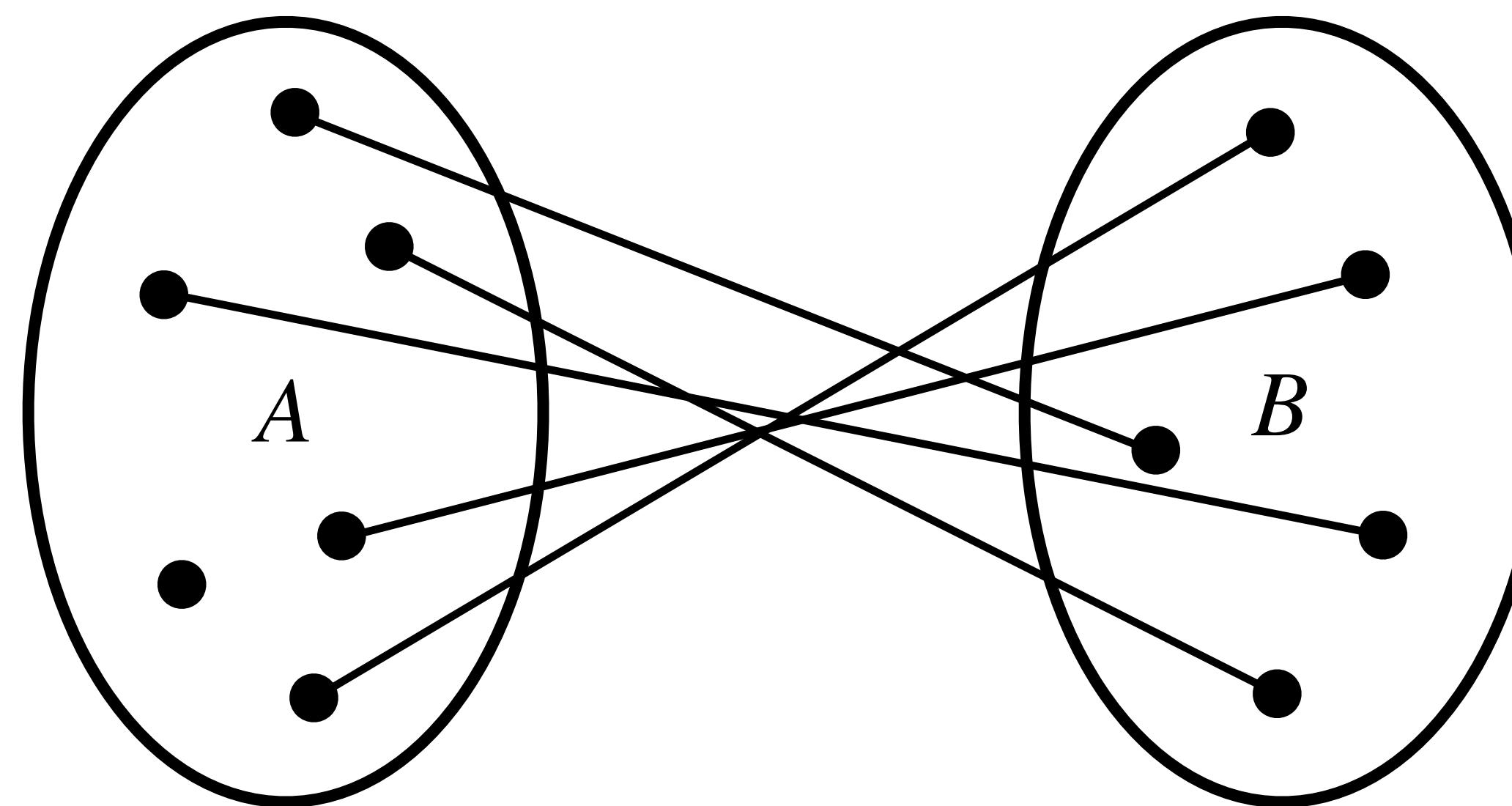
Defn: A matching M is **maximum** if there is no matching M' such that $|M| < |M'|$.

Bipartite Graphs

Bipartite Graphs

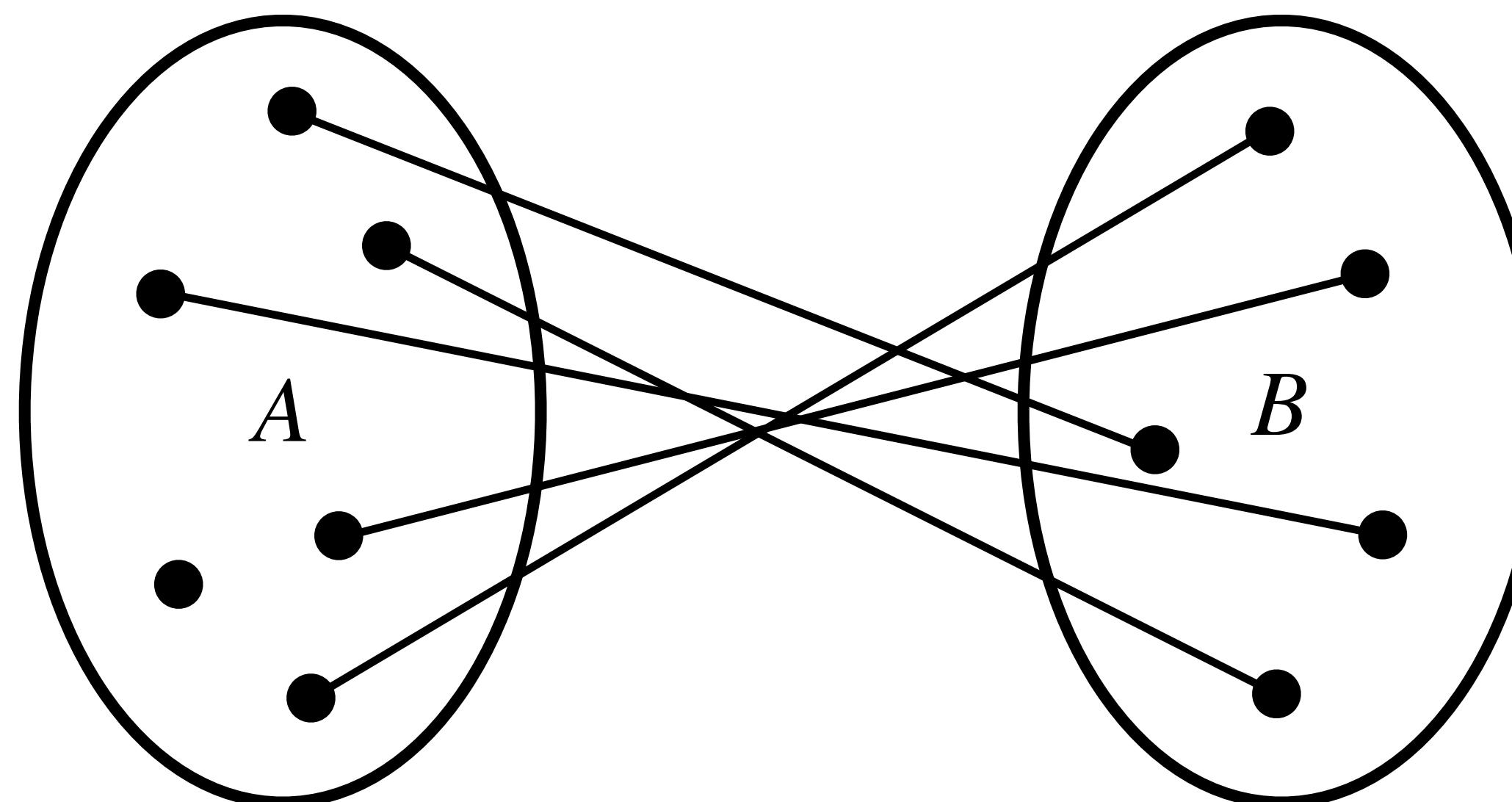


Bipartite Graphs



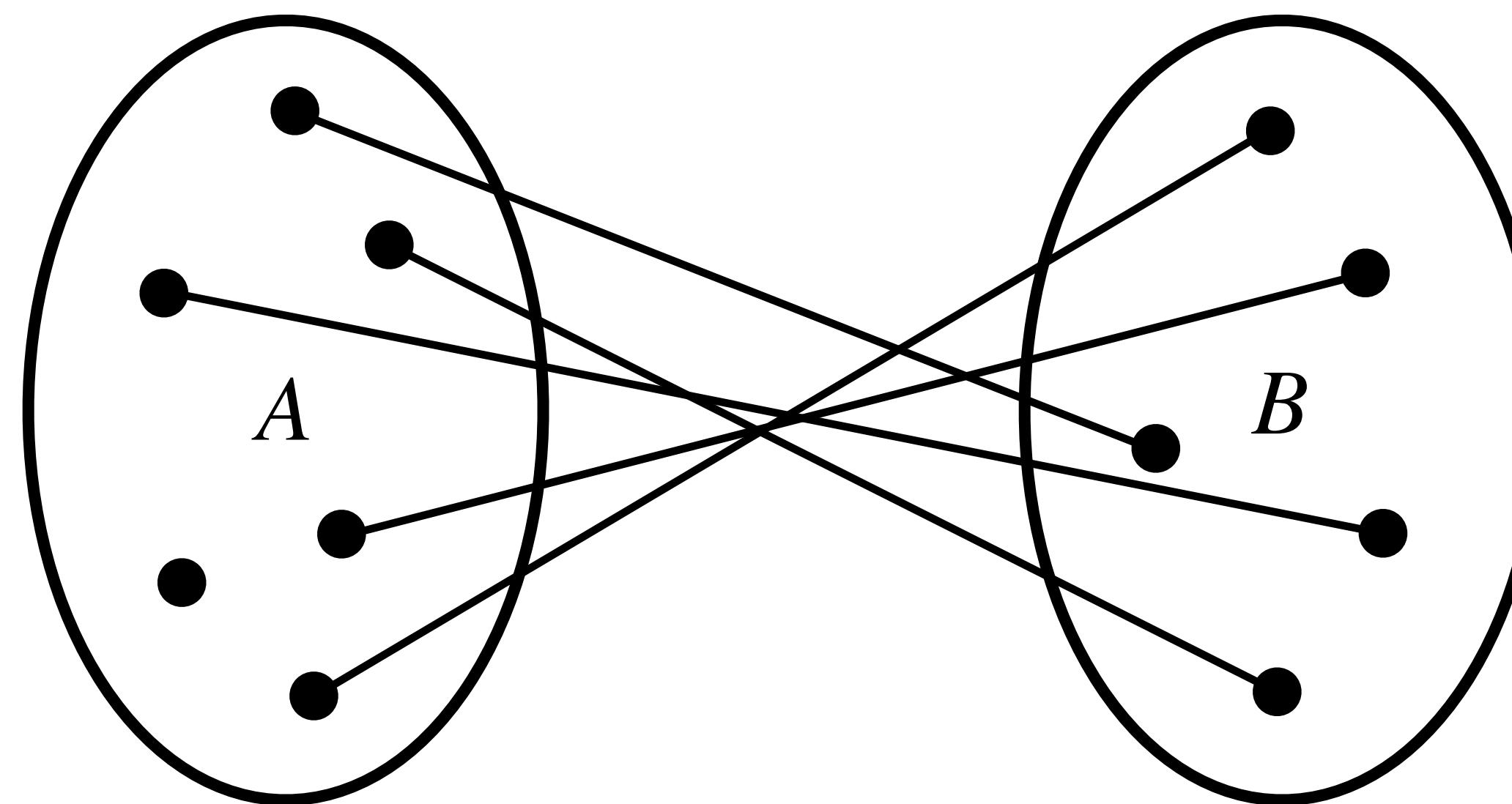
Bipartite Graphs

Defn: A graph G is **bipartite** if the vertex set of G can be split into **disjoint sets A and B**



Bipartite Graphs

Defn: A graph G is **bipartite** if the vertex set of G can be split into **disjoint sets A and B** such that each edge of G is incident on one vertex in A and one vertex in B .



Maximum Bipartite Matching in Jobs

Maximum Bipartite Matching in Jobs

Suppose there are **5 job openings** and **6 applicants**.

Maximum Bipartite Matching in Jobs

Suppose there are **5 job openings** and **6 applicants**. We want to fill each job opening by

Maximum Bipartite Matching in Jobs

Suppose there are **5 job openings** and **6 applicants**. We want to fill each job opening by hiring exactly one applicant and one applicant can do at most one job.

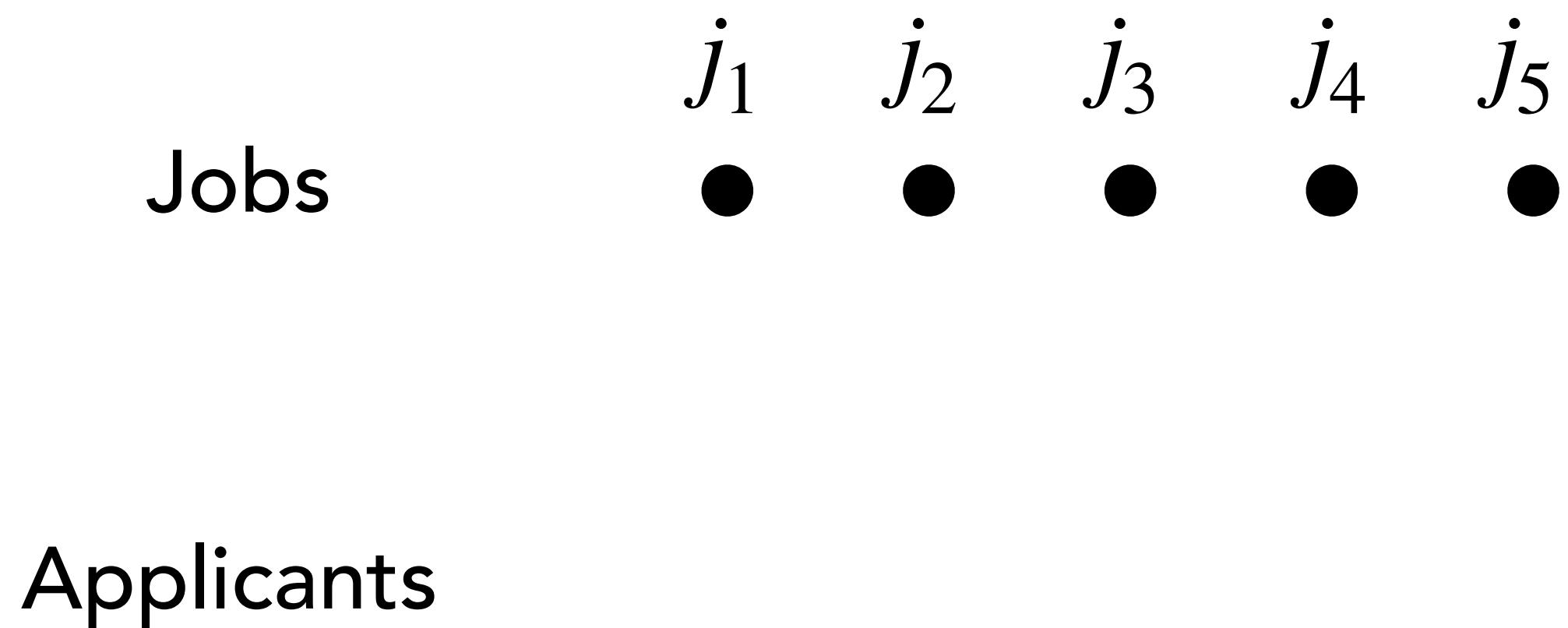
Maximum Bipartite Matching in Jobs

Suppose there are **5 job openings** and **6 applicants**. We want to fill each job opening by hiring exactly one applicant and one applicant can do at most one job.

	j_1	j_2	j_3	j_4	j_5
Jobs	●	●	●	●	●

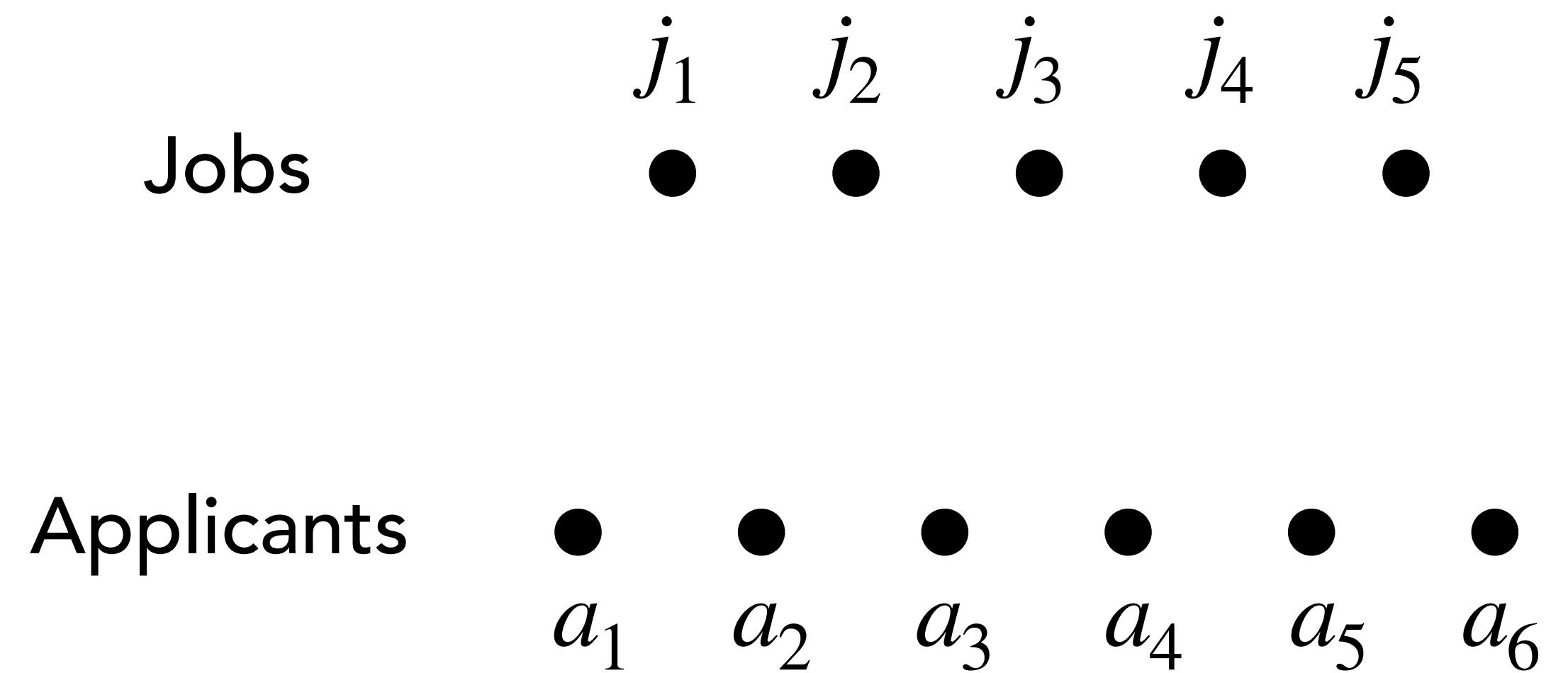
Maximum Bipartite Matching in Jobs

Suppose there are **5 job openings** and **6 applicants**. We want to fill each job opening by hiring exactly one applicant and one applicant can do at most one job.



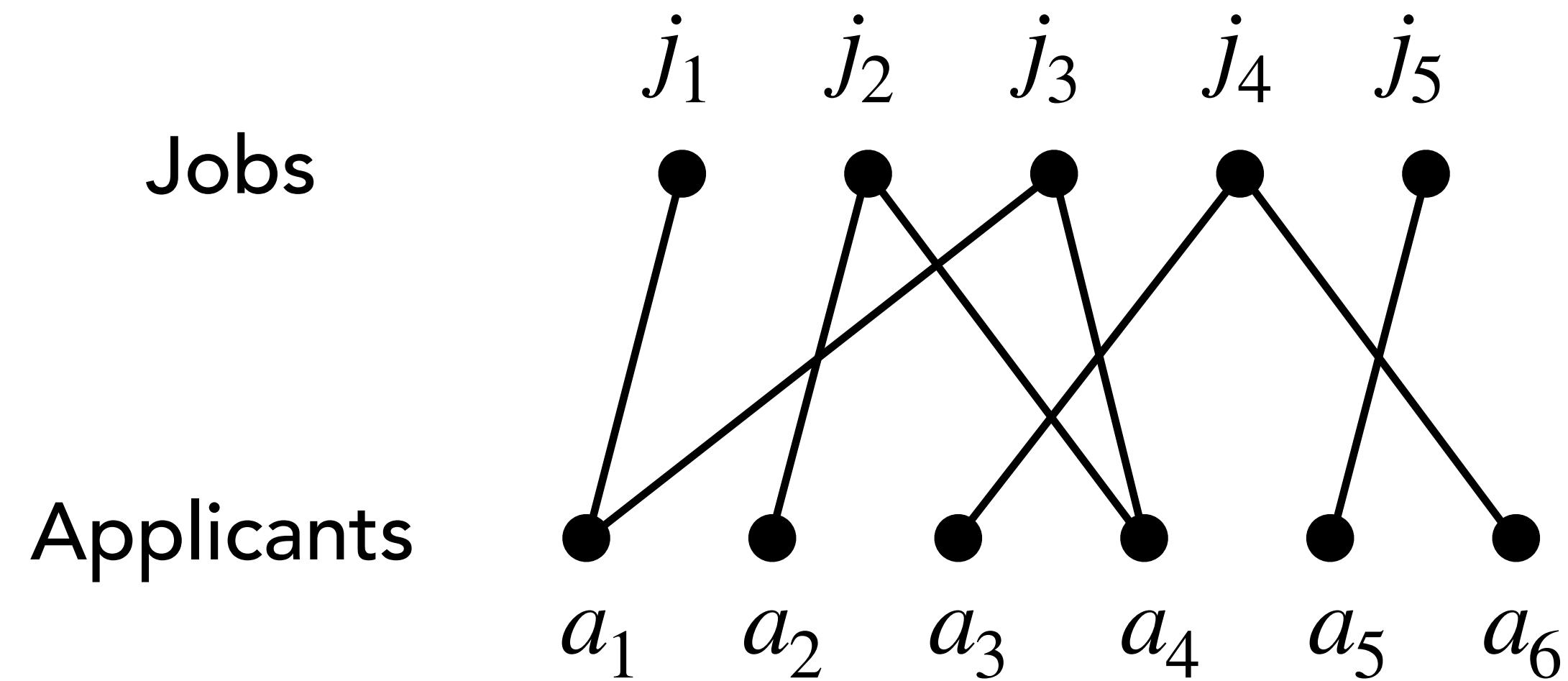
Maximum Bipartite Matching in Jobs

Suppose there are **5 job openings** and **6 applicants**. We want to fill each job opening by hiring exactly one applicant and one applicant can do at most one job.



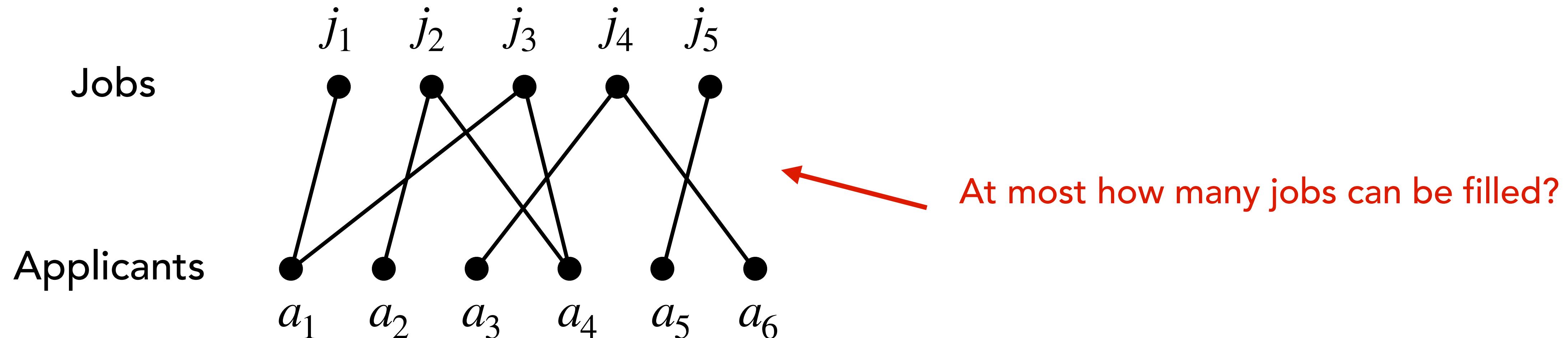
Maximum Bipartite Matching in Jobs

Suppose there are **5 job openings** and **6 applicants**. We want to fill each job opening by hiring exactly one applicant and one applicant can do at most one job.



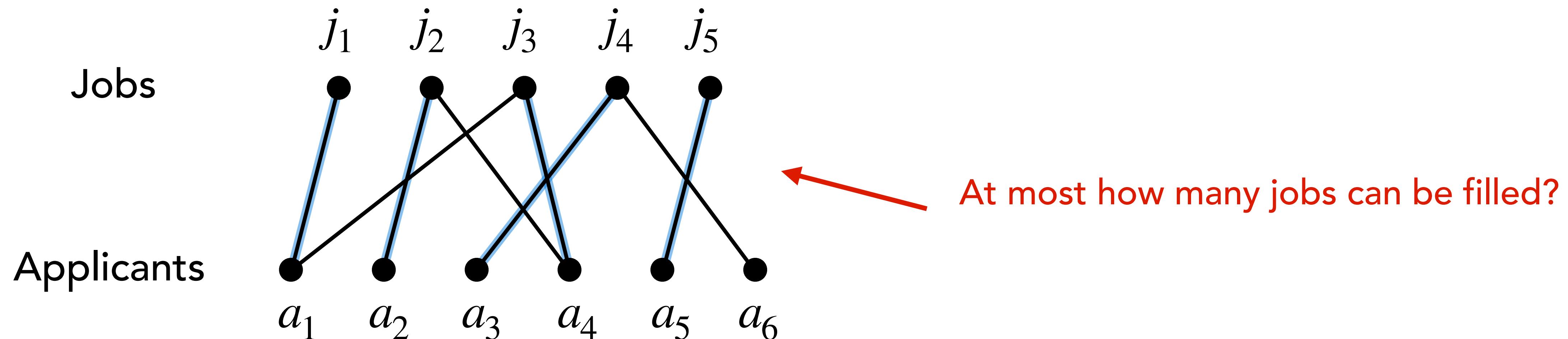
Maximum Bipartite Matching in Jobs

Suppose there are **5 job openings** and **6 applicants**. We want to fill each job opening by hiring exactly one applicant and one applicant can do at most one job.



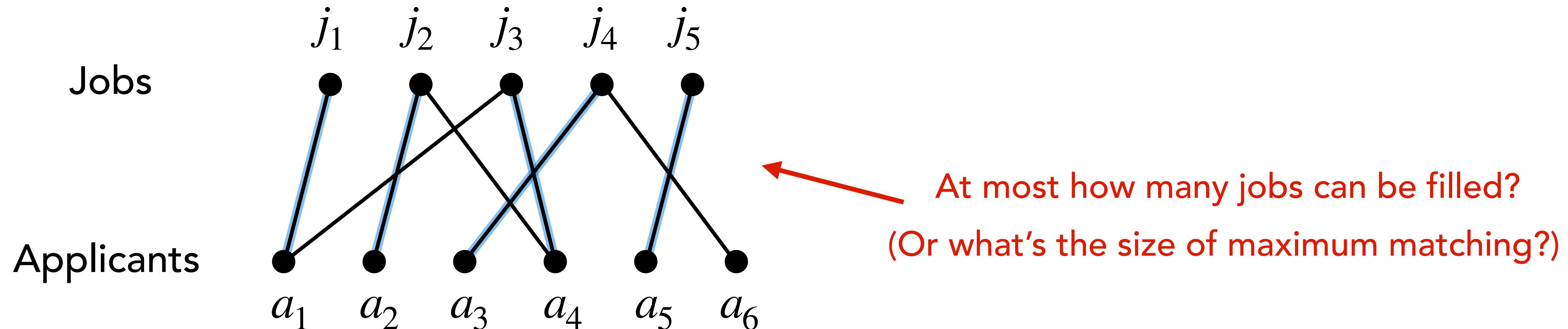
Maximum Bipartite Matching in Jobs

Suppose there are **5 job openings** and **6 applicants**. We want to fill each job opening by hiring exactly one applicant and one applicant can do at most one job.



Maximum Bipartite Matching in Jobs

Suppose there are **5 job openings** and **6 applicants**. We want to fill each job opening by hiring exactly one applicant and one applicant can do at most one job.



Maximum Bipartite Matching in Matchmaking

Maximum Bipartite Matching in Matchmaking

Suppose there are 5 girls and 6 boys.

Maximum Bipartite Matching in Matchmaking

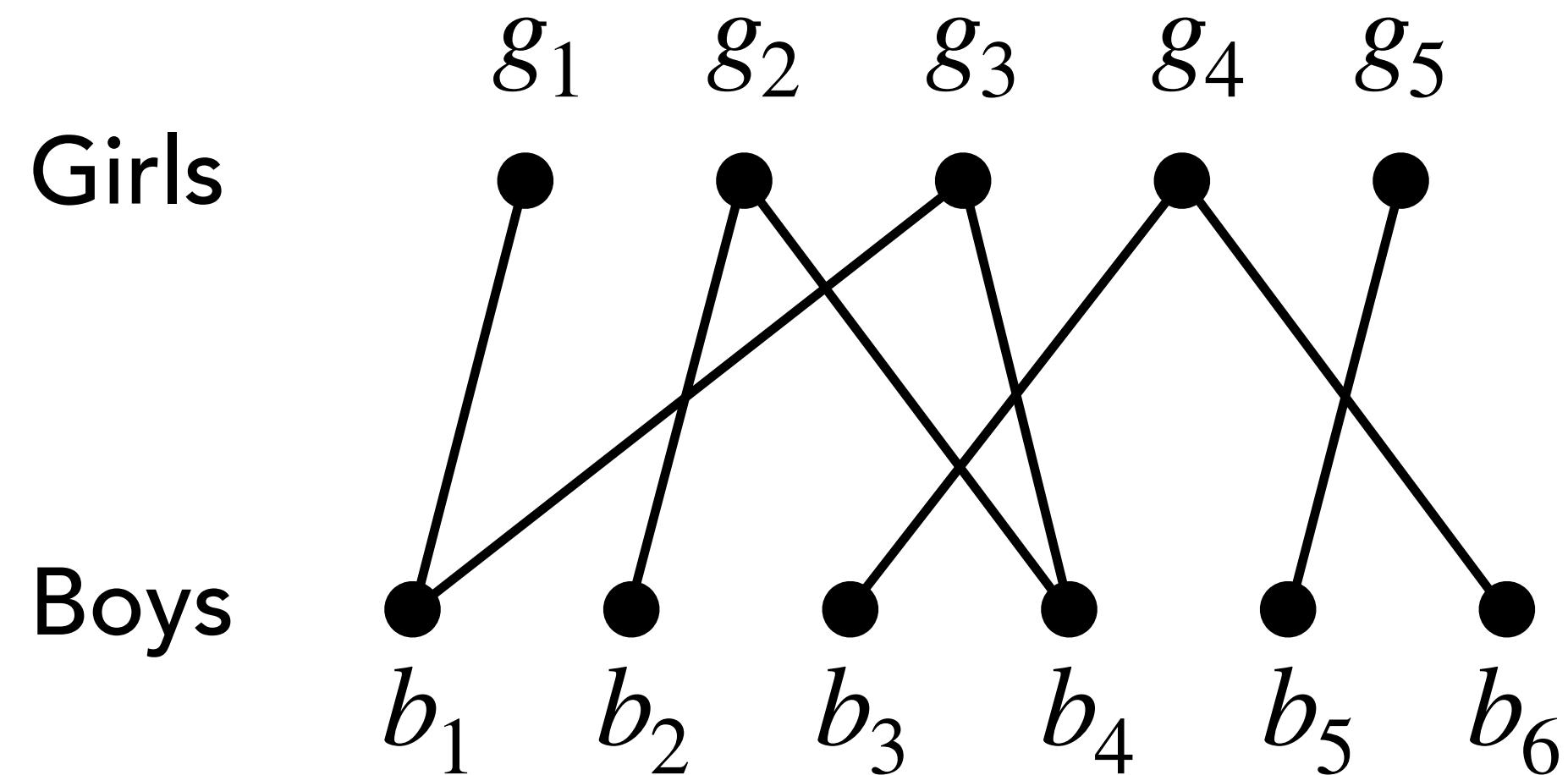
Suppose there are **5 girls** and **6 boys**. We want to form couples based on interest shown

Maximum Bipartite Matching in Matchmaking

Suppose there are **5 girls** and **6 boys**. We want to form couples based on interest shown between a boy and a girl assuming monogamous setup.

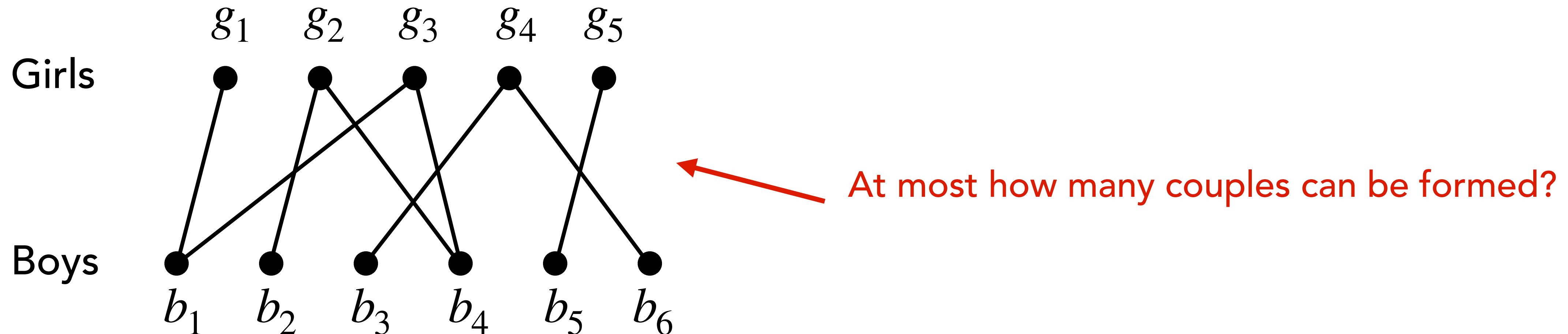
Maximum Bipartite Matching in Matchmaking

Suppose there are **5 girls** and **6 boys**. We want to form couples based on interest shown between a boy and a girl assuming monogamous setup.



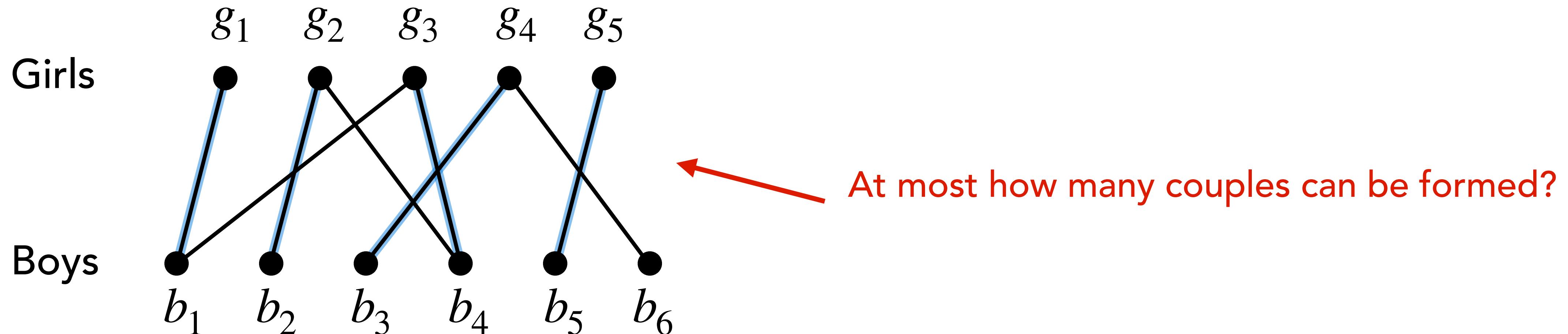
Maximum Bipartite Matching in Matchmaking

Suppose there are **5 girls** and **6 boys**. We want to form couples based on interest shown between a boy and a girl assuming monogamous setup.



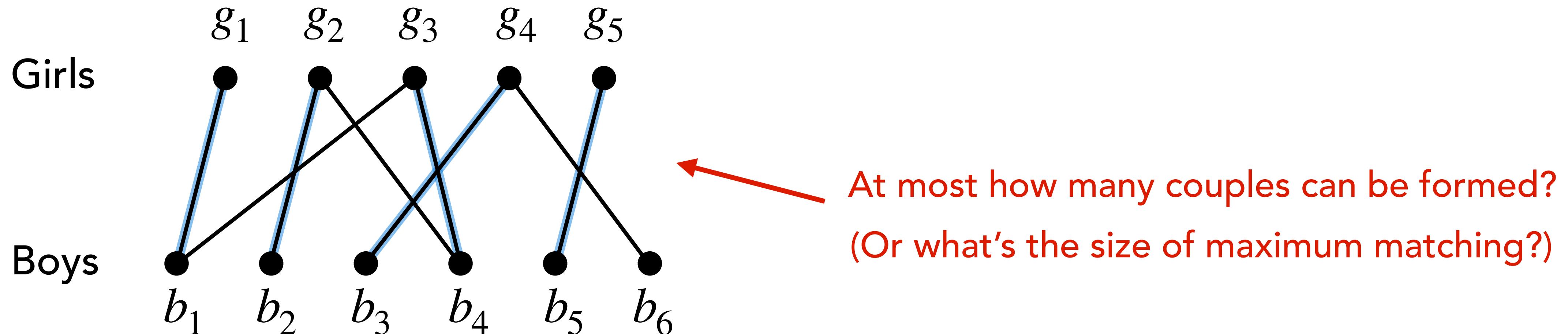
Maximum Bipartite Matching in Matchmaking

Suppose there are **5 girls** and **6 boys**. We want to form couples based on interest shown between a boy and a girl assuming monogamous setup.



Maximum Bipartite Matching in Matchmaking

Suppose there are **5 girls** and **6 boys**. We want to form couples based on interest shown between a boy and a girl assuming monogamous setup.



Maximum Bipartite Matching in Factories

Maximum Bipartite Matching in Factories

Suppose there are 5 machine and 6 tasks.

Maximum Bipartite Matching in Factories

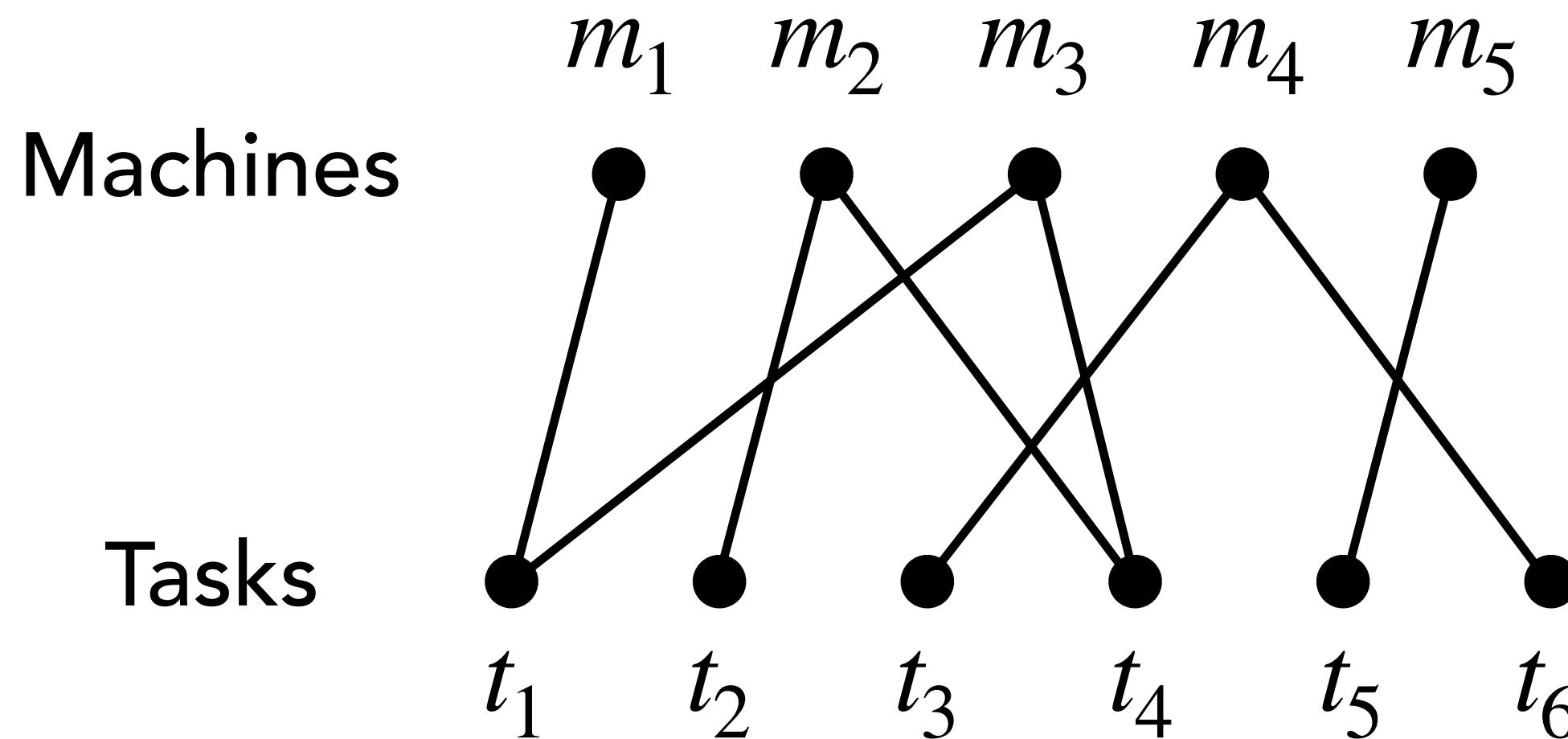
Suppose there are **5 machines** and **6 tasks**. Each machine can do one task at a time and one task

Maximum Bipartite Matching in Factories

Suppose there are **5 machine** and **6 tasks**. Each machine can do one task at a time and one task can be done by at most one machine.

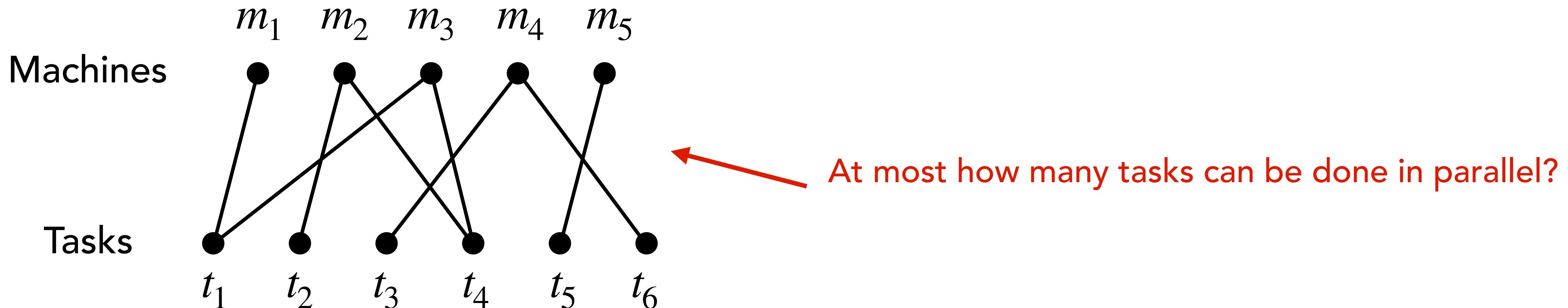
Maximum Bipartite Matching in Factories

Suppose there are **5 machines** and **6 tasks**. Each machine can do one task at a time and one task can be done by at most one machine.



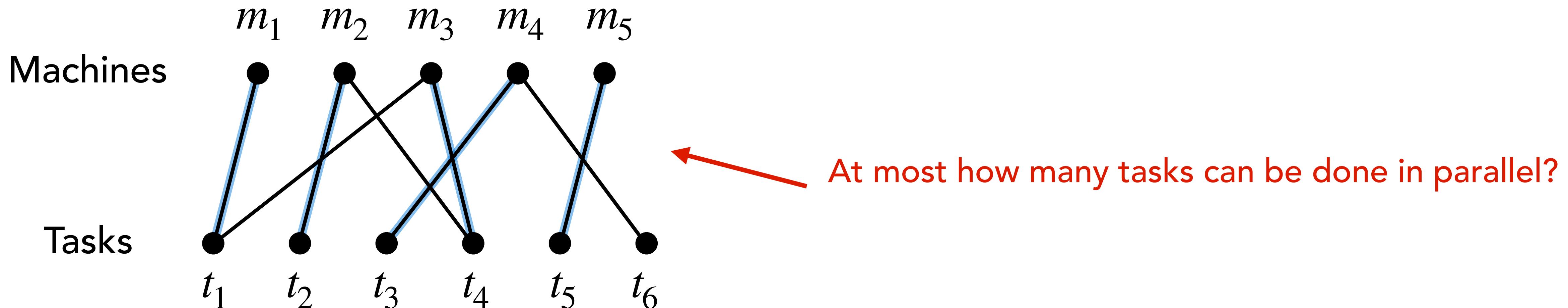
Maximum Bipartite Matching in Factories

Suppose there are **5 machines** and **6 tasks**. Each machine can do one task at a time and one task can be done by at most one machine.



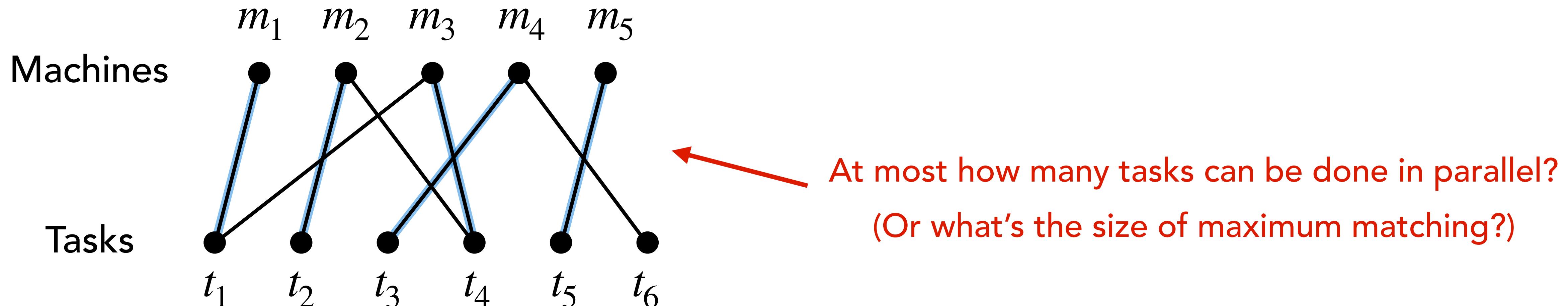
Maximum Bipartite Matching in Factories

Suppose there are **5 machines** and **6 tasks**. Each machine can do one task at a time and one task can be done by at most one machine.



Maximum Bipartite Matching in Factories

Suppose there are **5 machines** and **6 tasks**. Each machine can do one task at a time and one task can be done by at most one machine.



Maximum Bipartite Matching

Maximum Bipartite Matching

Max-Bipartite-Matching:

Maximum Bipartite Matching

Max-Bipartite-Matching:

Input: A bipartite graph G .

Maximum Bipartite Matching

Max-Bipartite-Matching:

Input: A bipartite graph G .

Output: Maximum matching in G .

Maximum Bipartite Matching

Max-Bipartite-Matching:

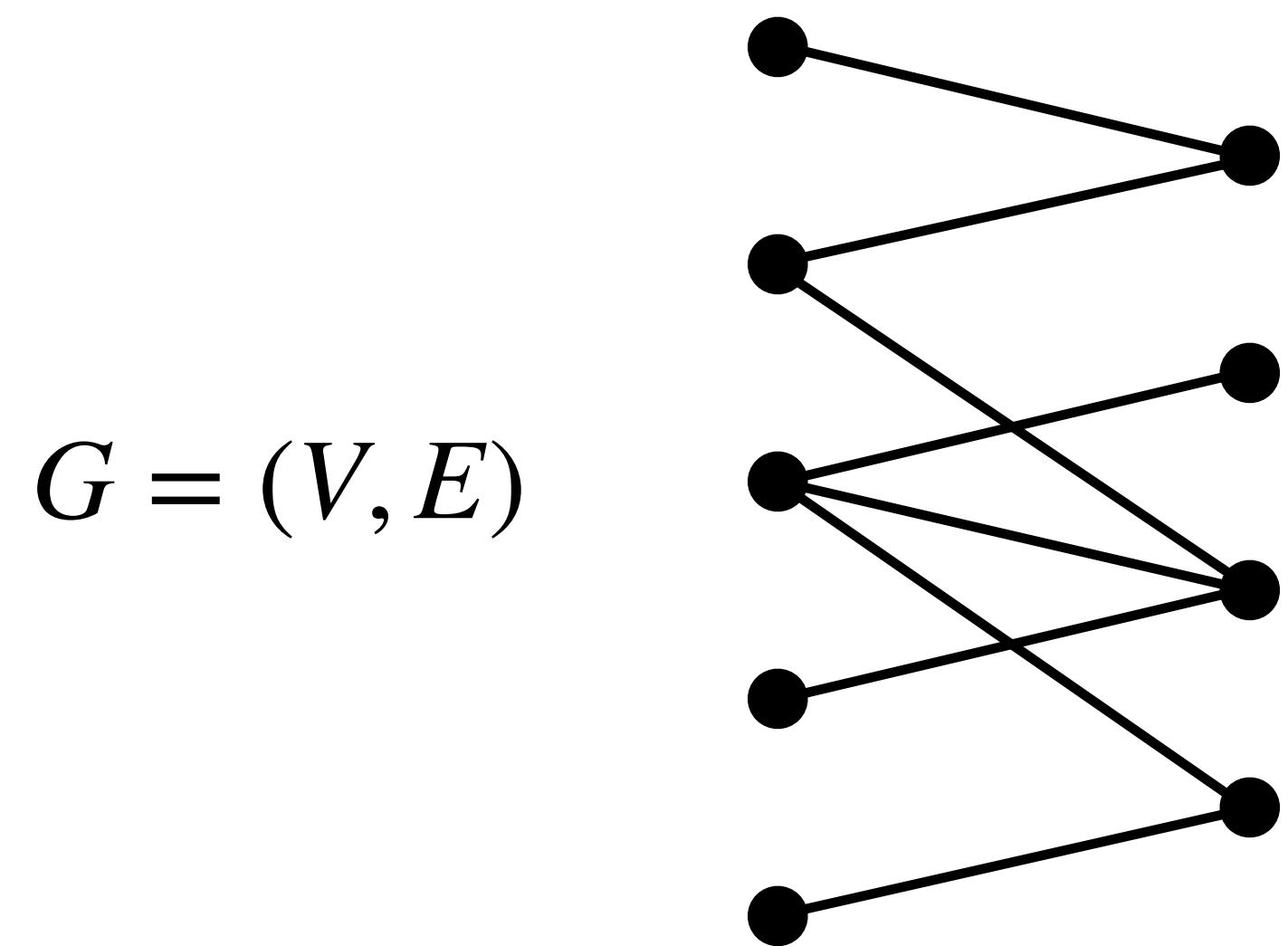
Input: A bipartite graph G .

Output: Maximum matching in G .

Has a surprising connection to **Max-flow**.

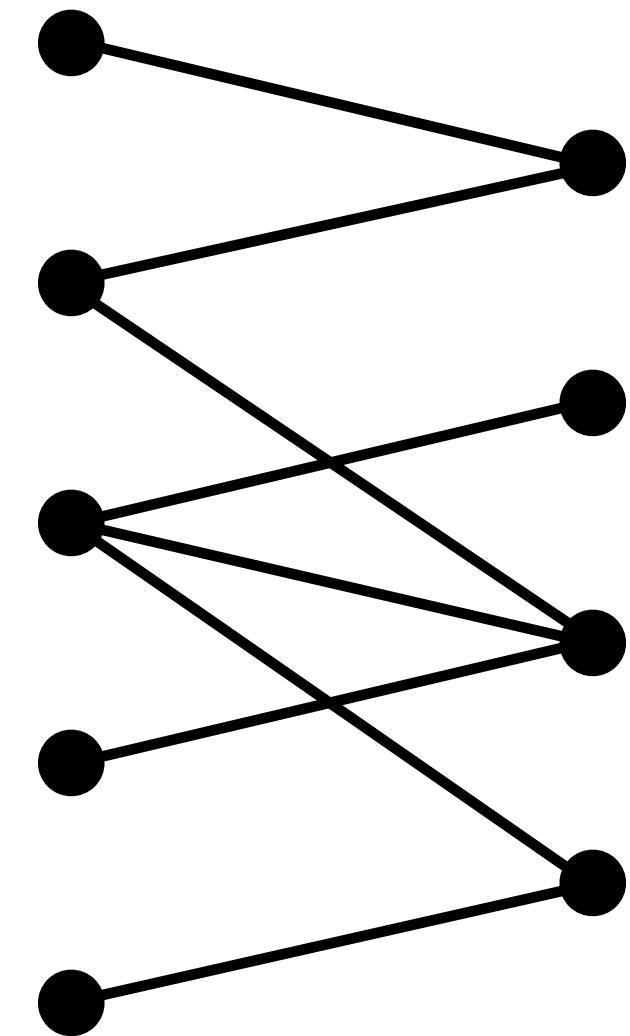
Bipartite Matching to Flow

Bipartite Matching to Flow

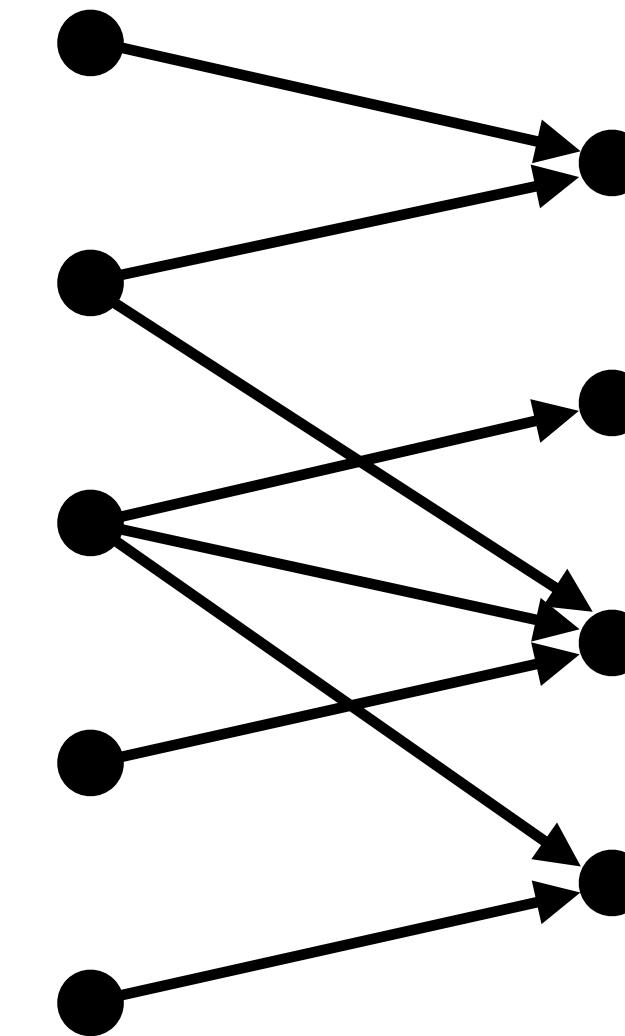


Bipartite Matching to Flow

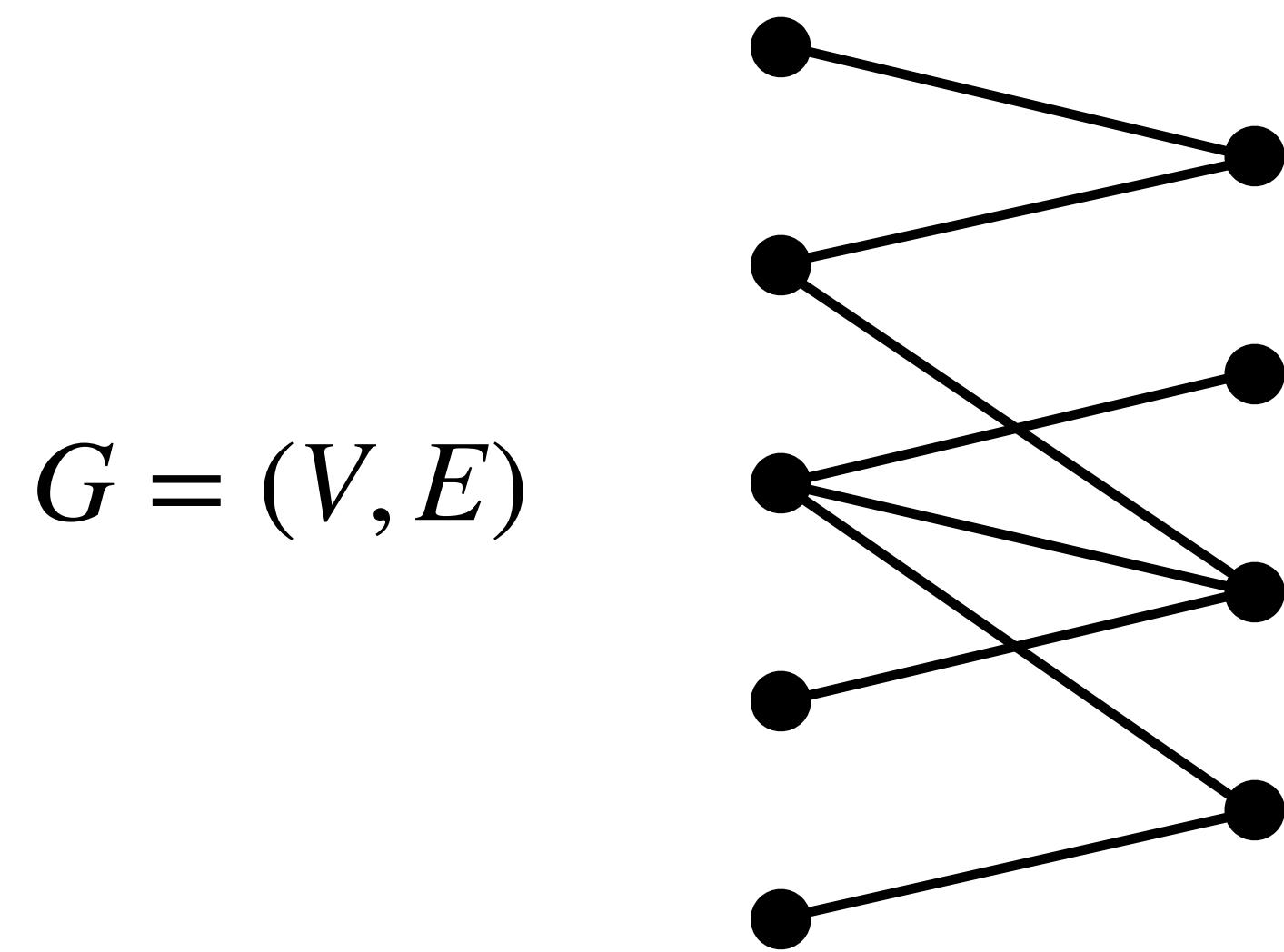
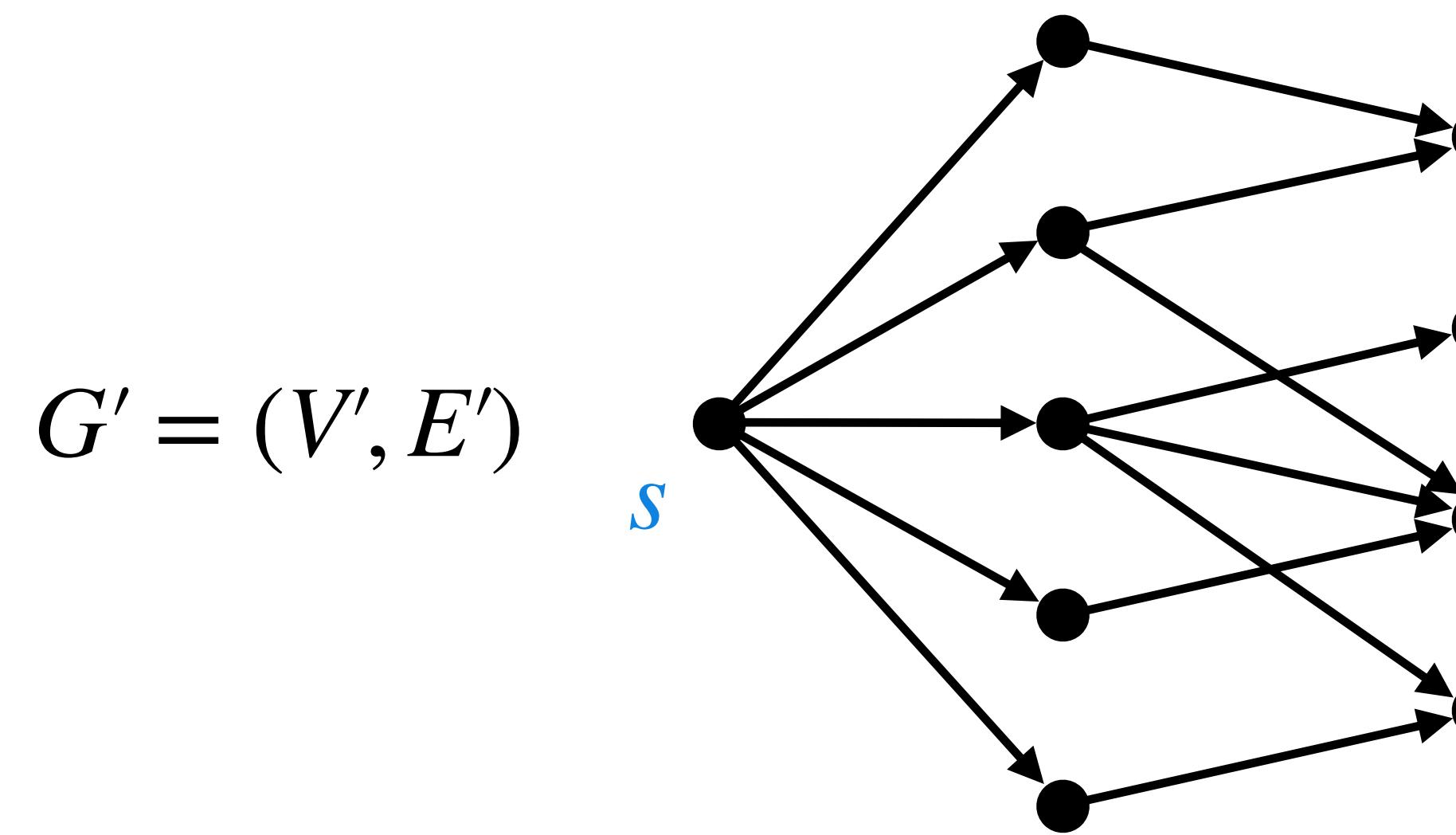
$$G = (V, E)$$



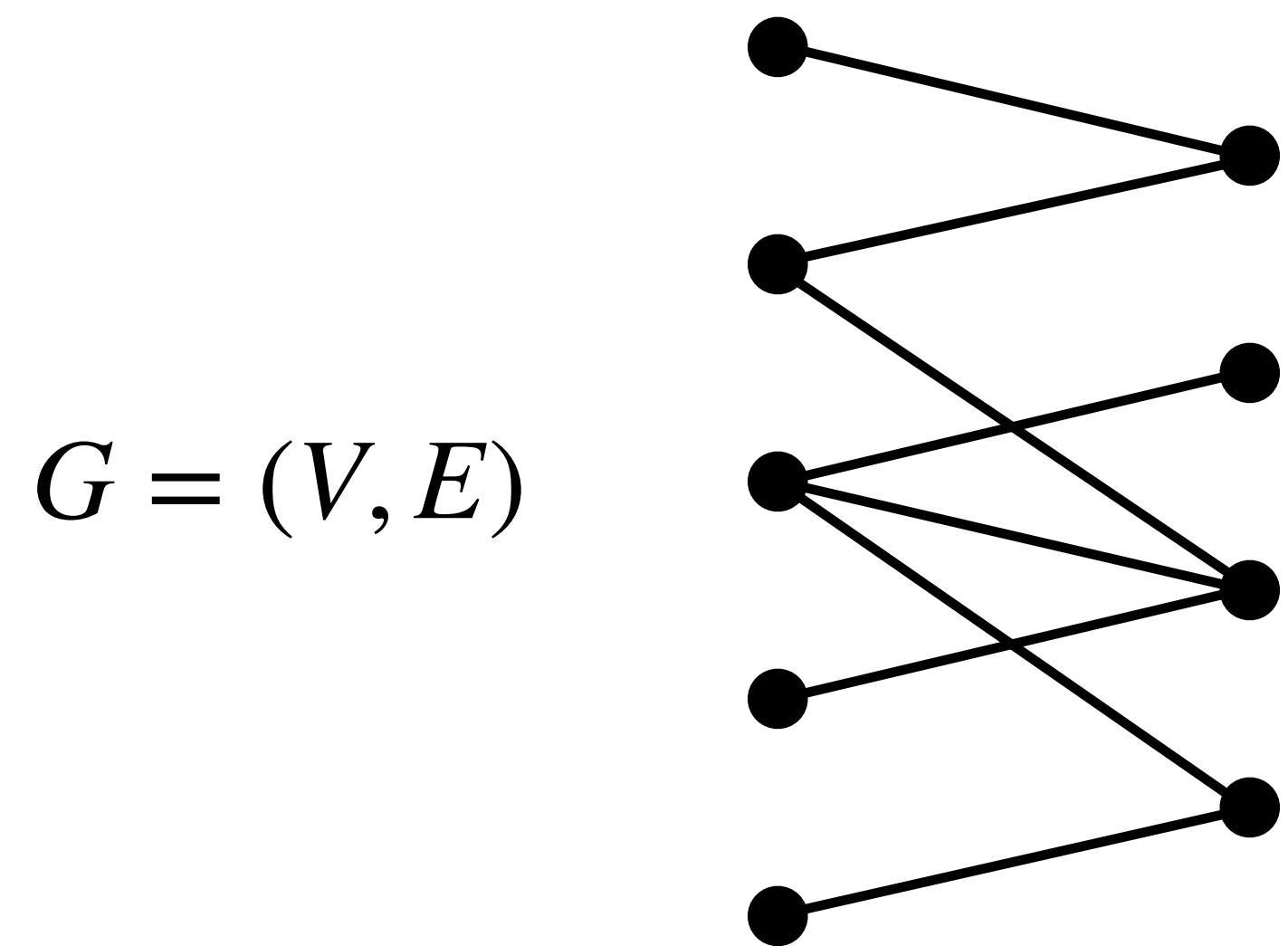
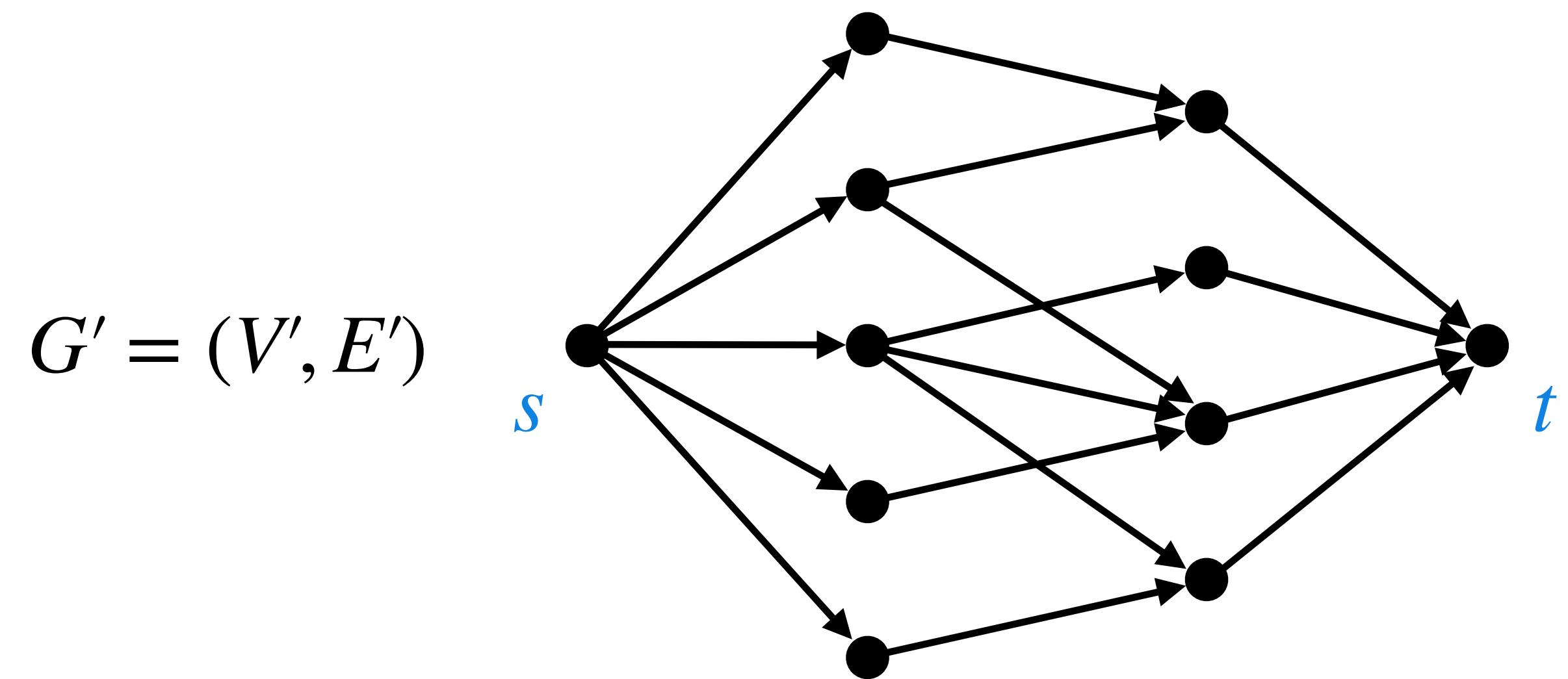
$$G' = (V', E')$$



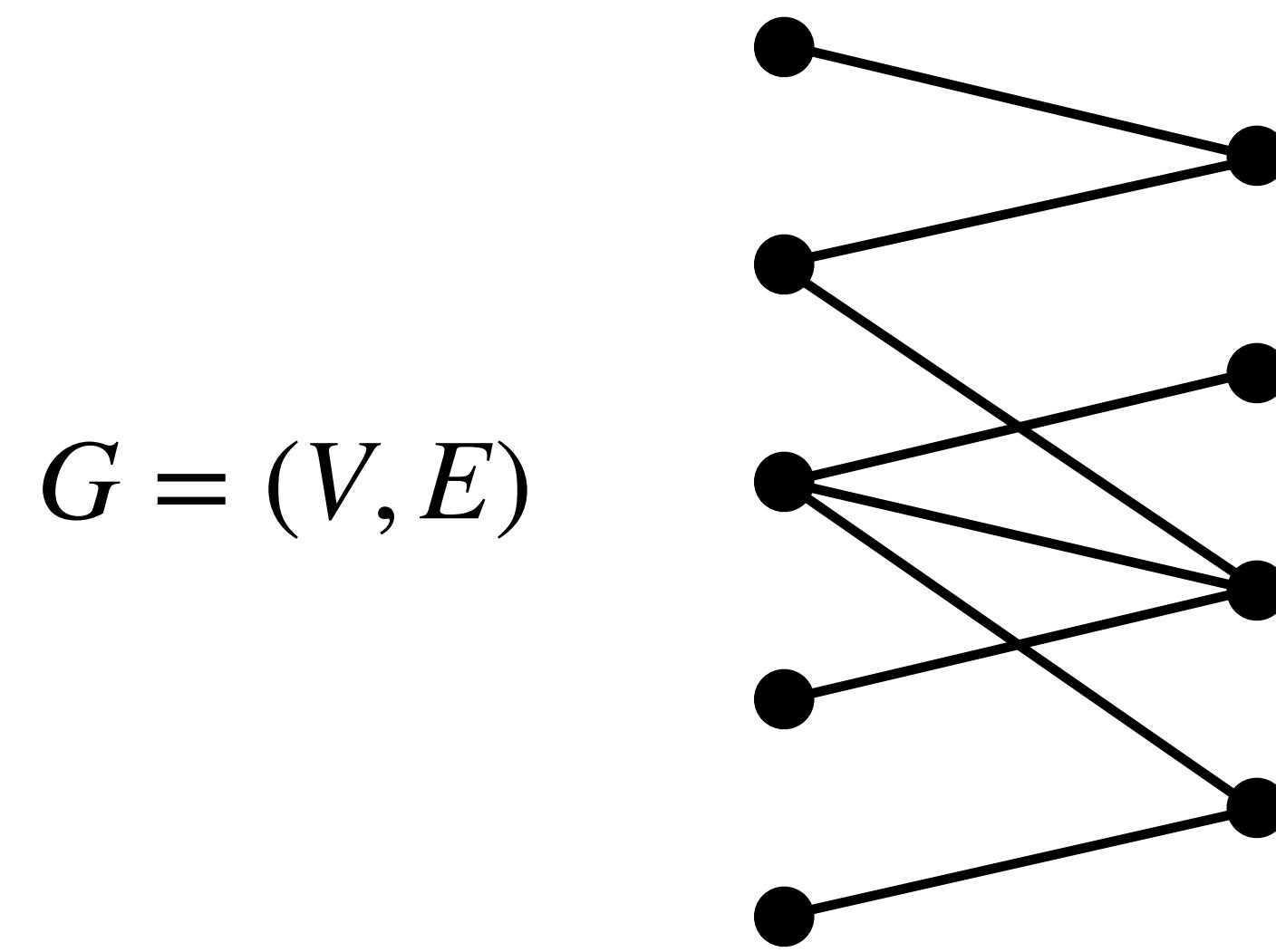
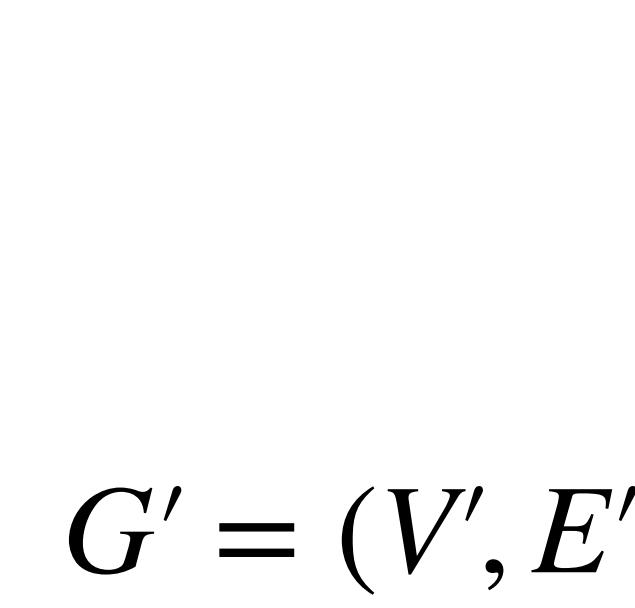
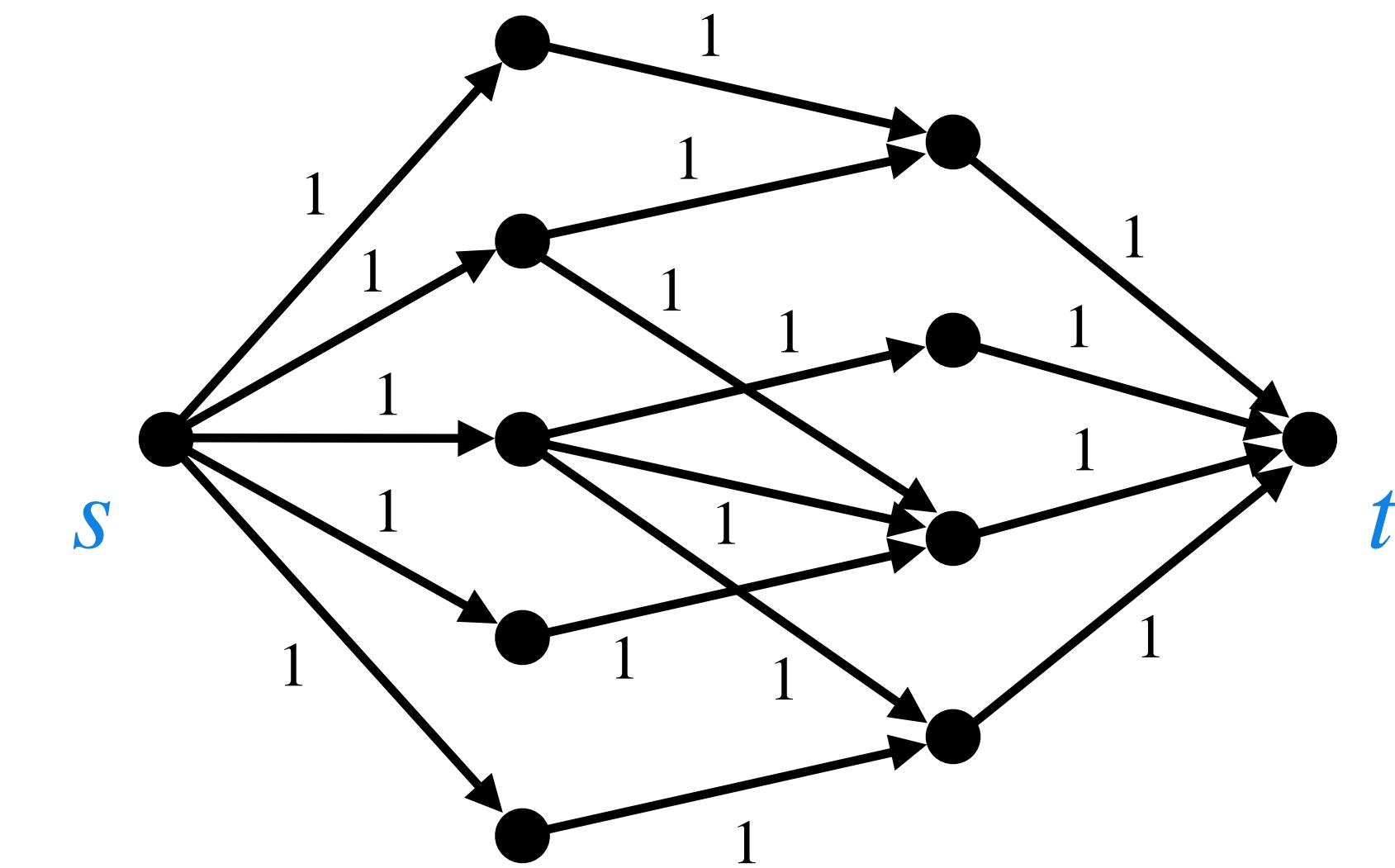
Bipartite Matching to Flow



Bipartite Matching to Flow

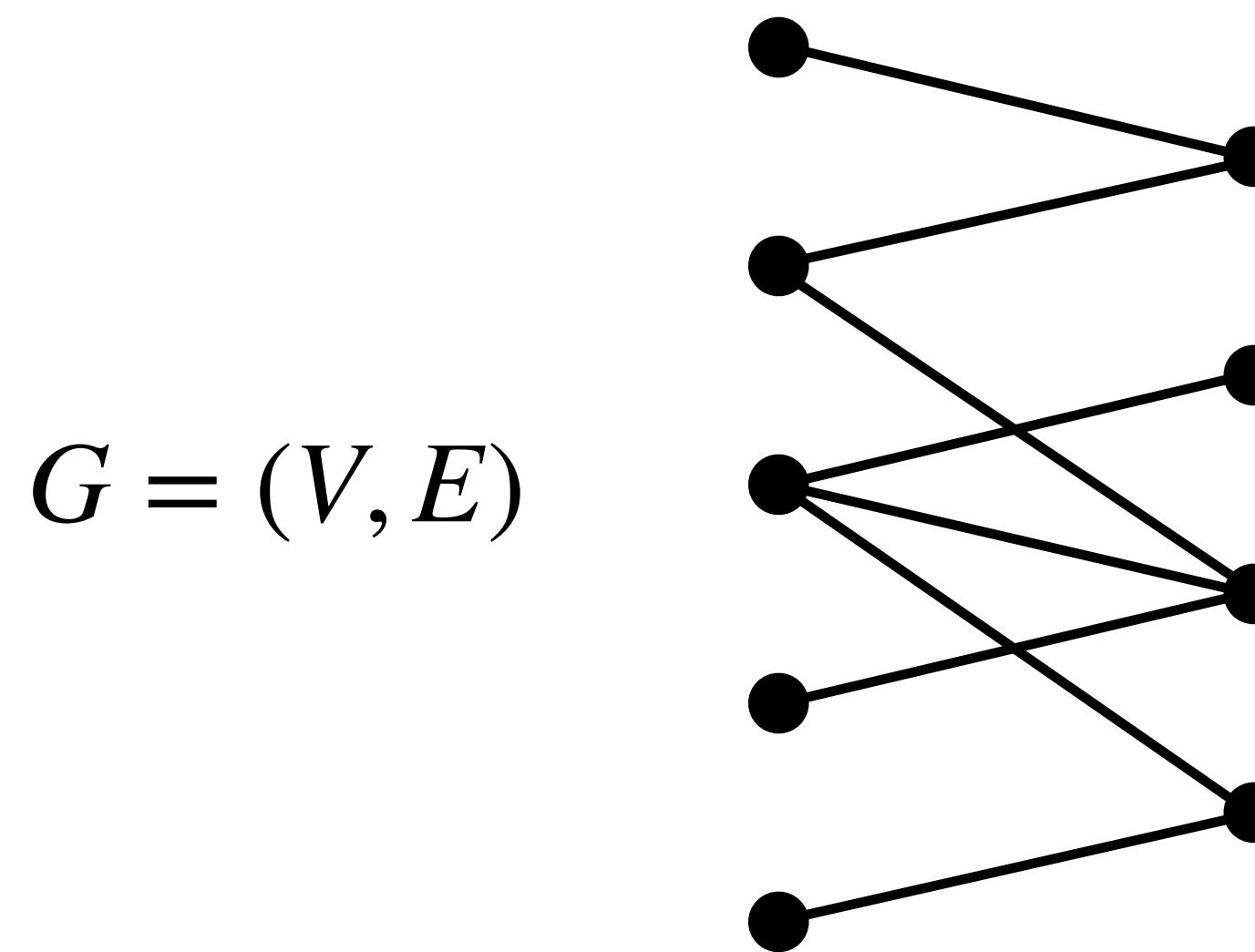
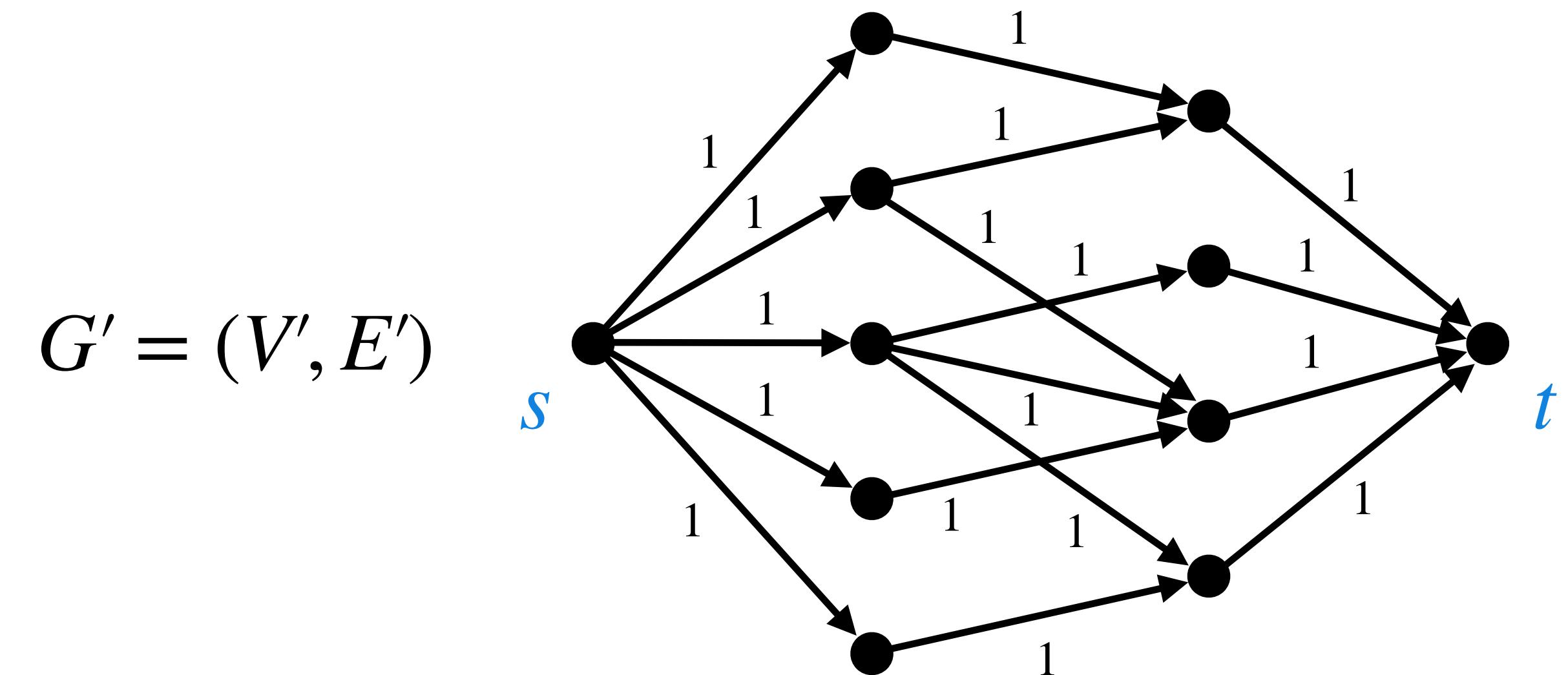


Bipartite Matching to Flow



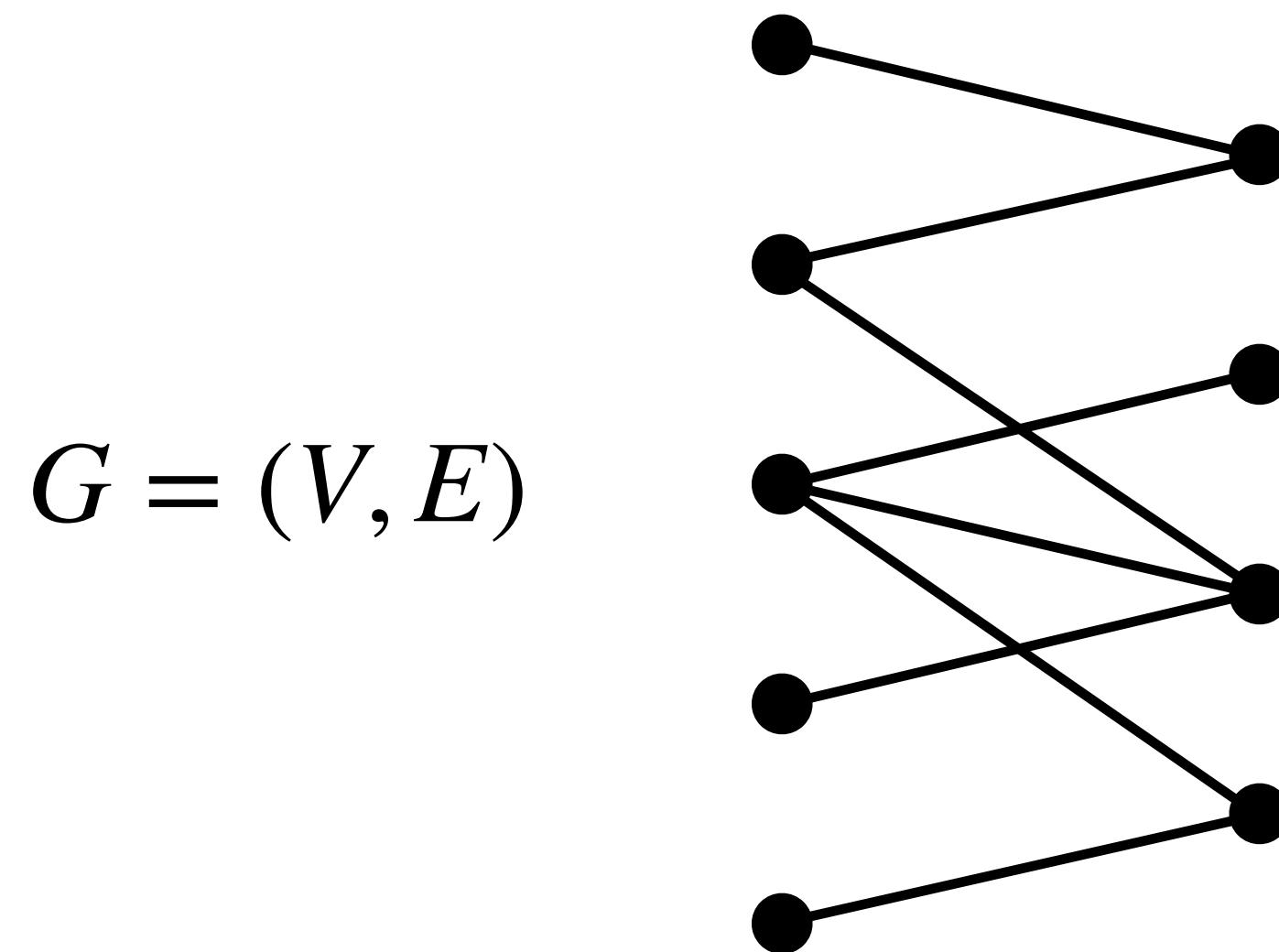
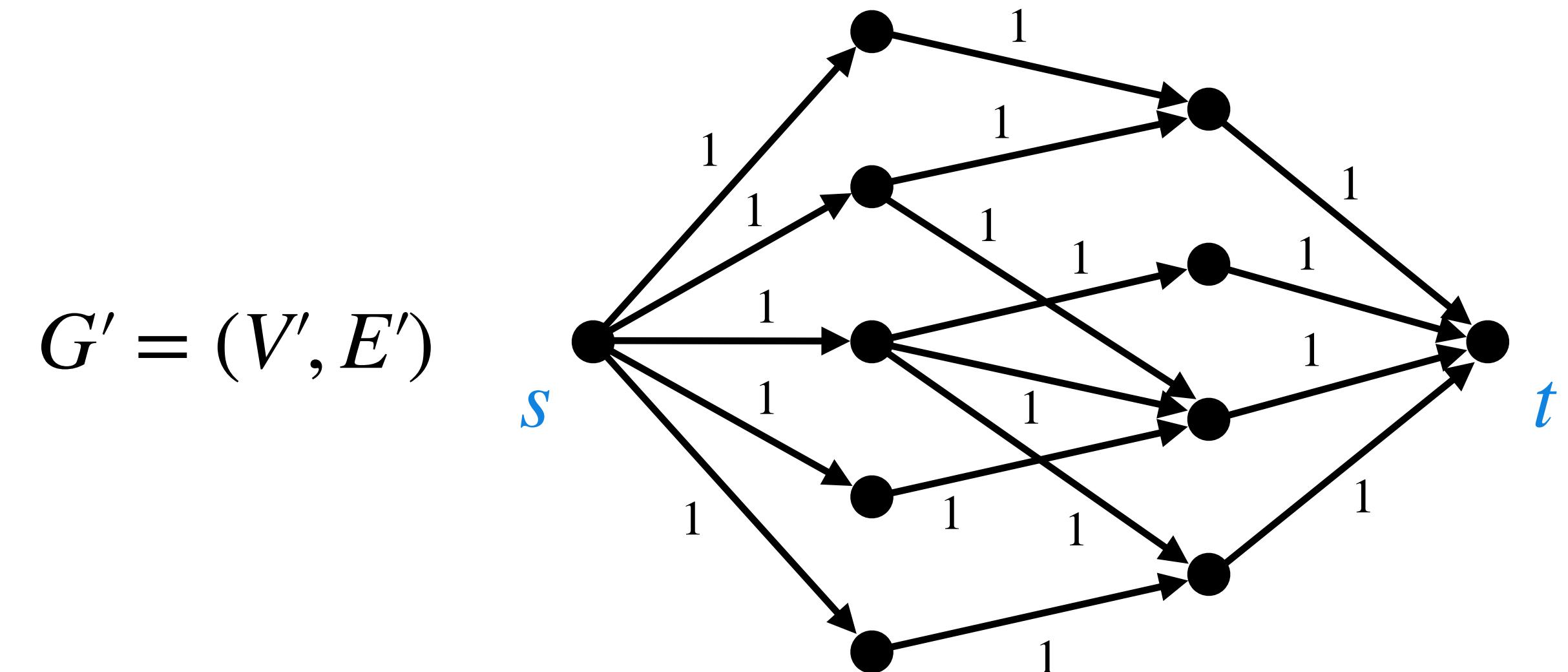
Bipartite Matching to Flow

For a bipartite graph $G = (V, E)$ with partition (L, R) we construct the corresponding flow



Bipartite Matching to Flow

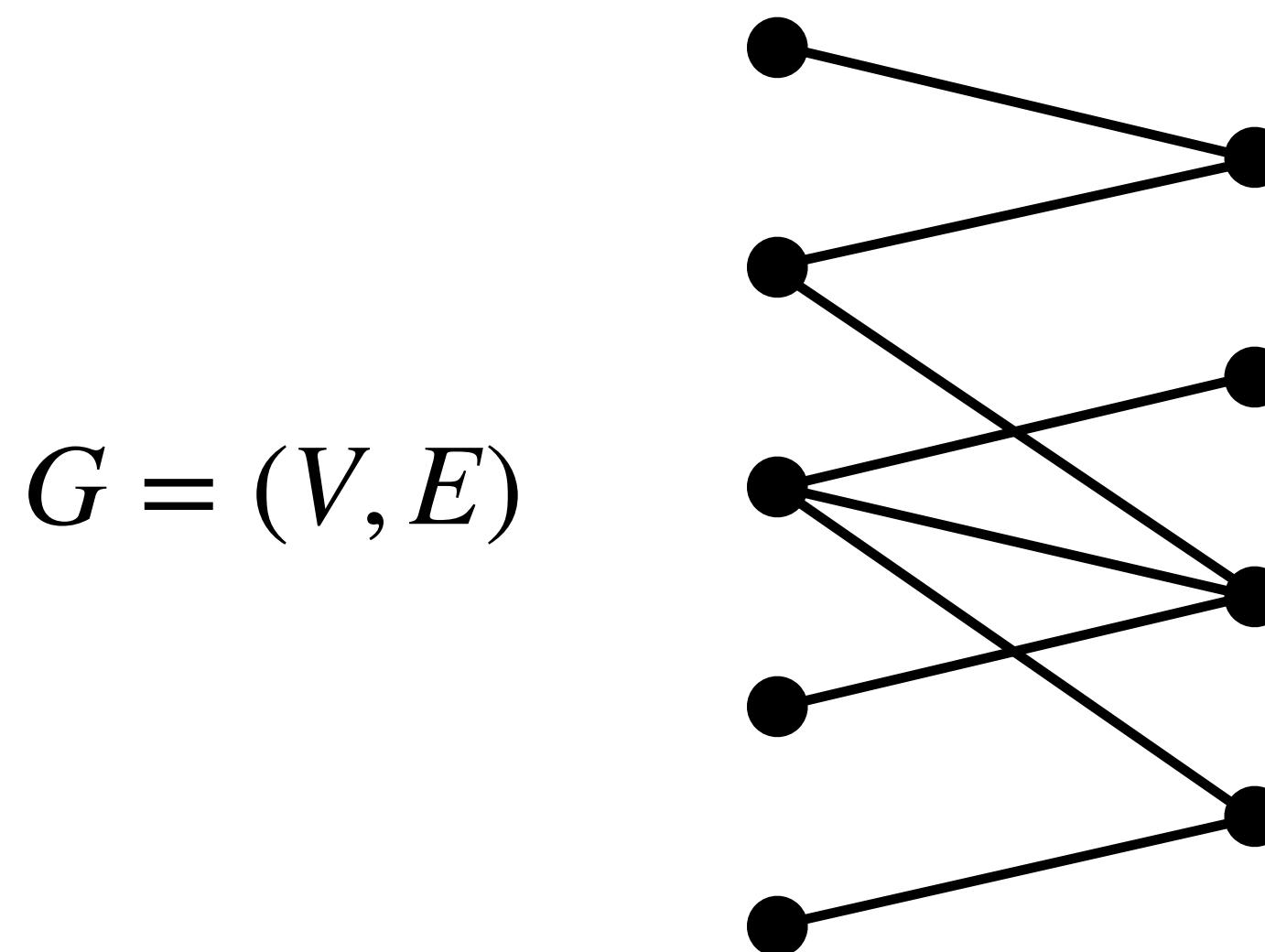
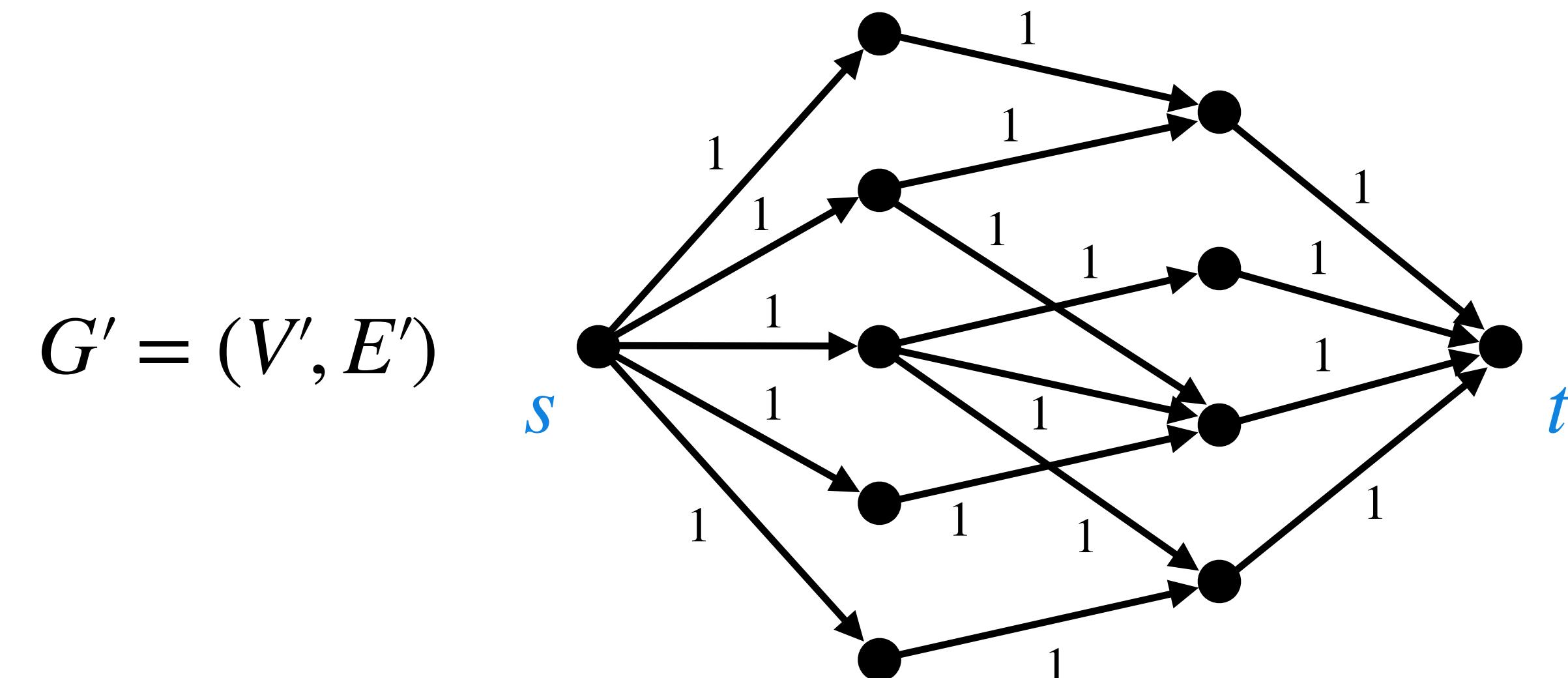
For a bipartite graph $G = (V, E)$ with partition (L, R) we construct the corresponding flow network $G' = (V', E')$, where:



Bipartite Matching to Flow

For a bipartite graph $G = (V, E)$ with partition (L, R) we construct the corresponding flow network $G' = (V', E')$, where:

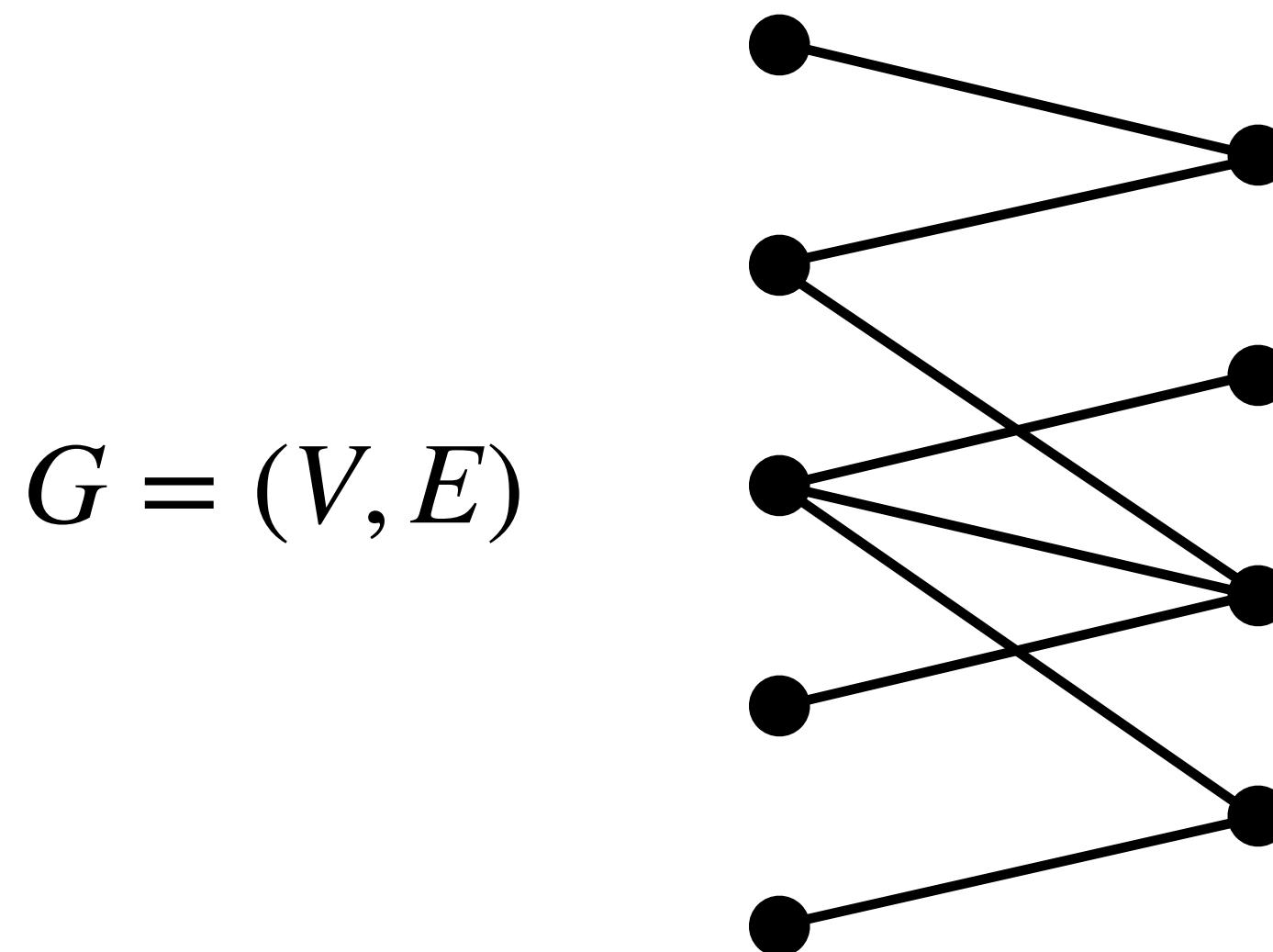
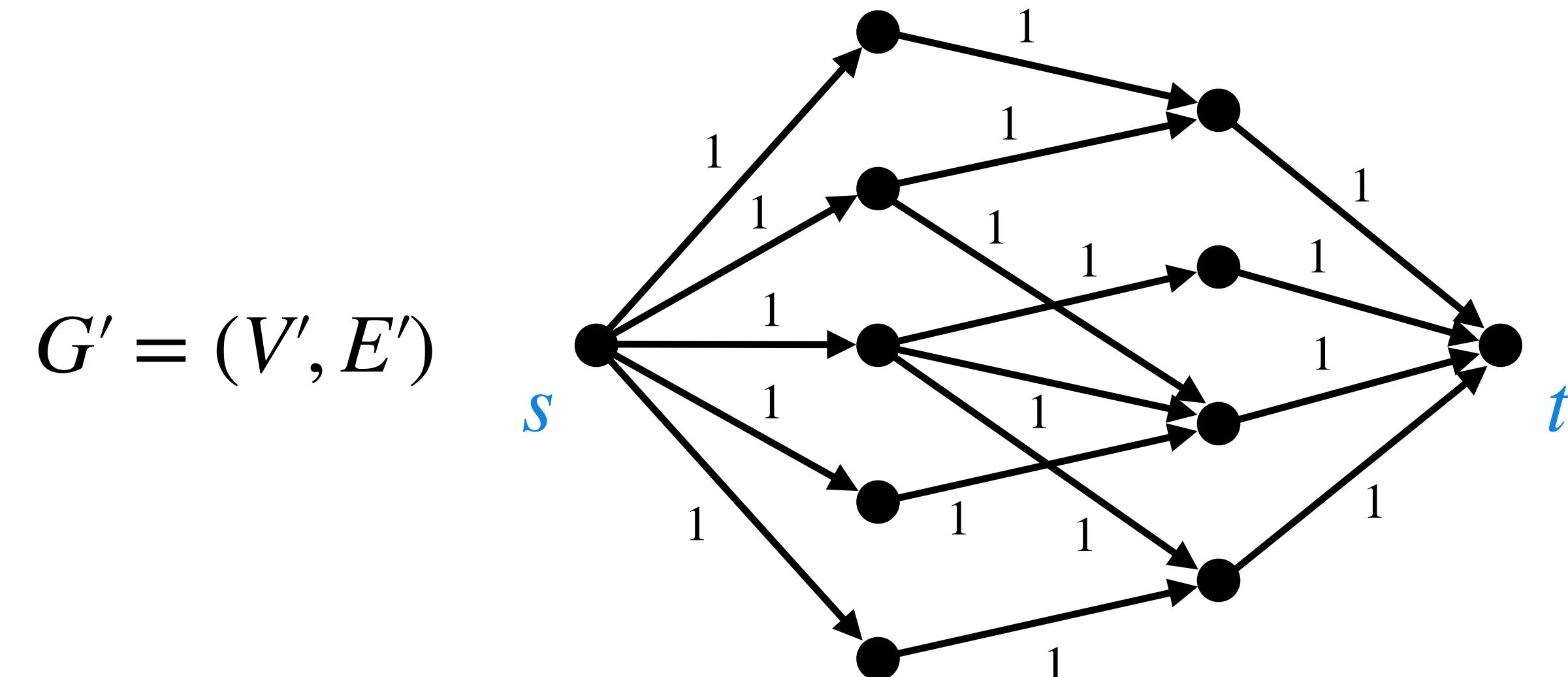
- $V' = V \cup \{s, t\}$, where s is the source and t is the sink.



Bipartite Matching to Flow

For a bipartite graph $G = (V, E)$ with partition (L, R) we construct the corresponding flow network $G' = (V', E')$, where:

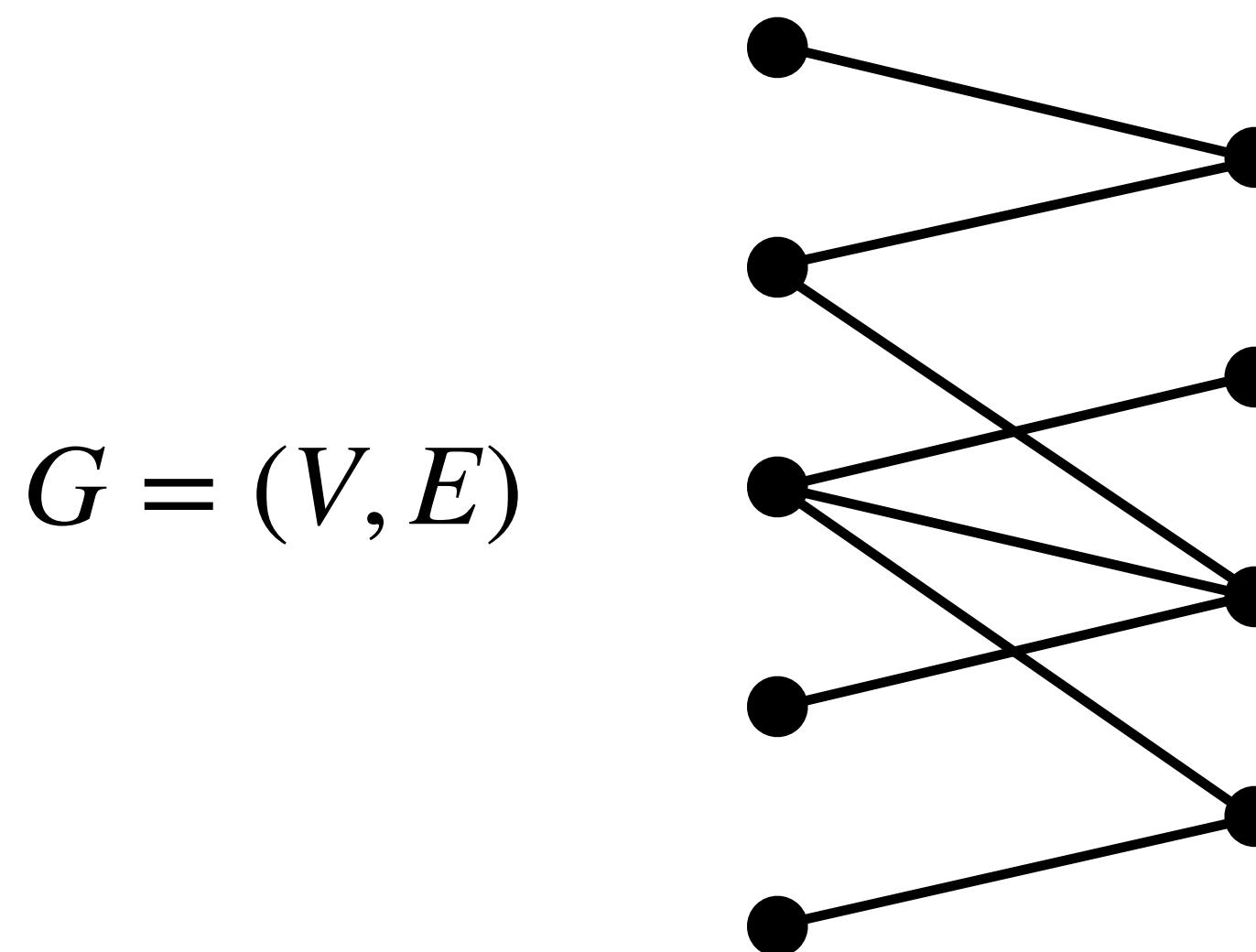
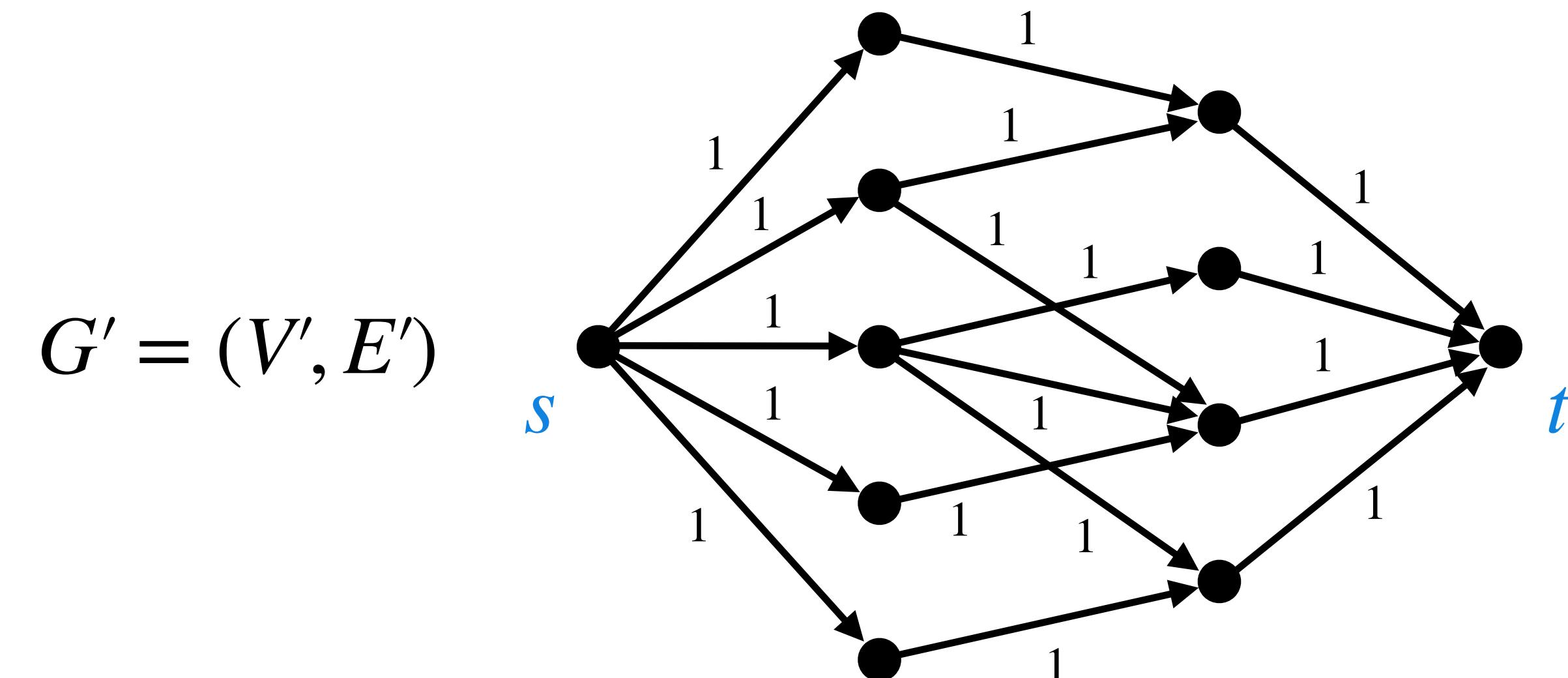
- $V' = V \cup \{s, t\}$, where s is the source and t is the sink.
- $E' =$



Bipartite Matching to Flow

For a bipartite graph $G = (V, E)$ with partition (L, R) we construct the corresponding flow network $G' = (V', E')$, where:

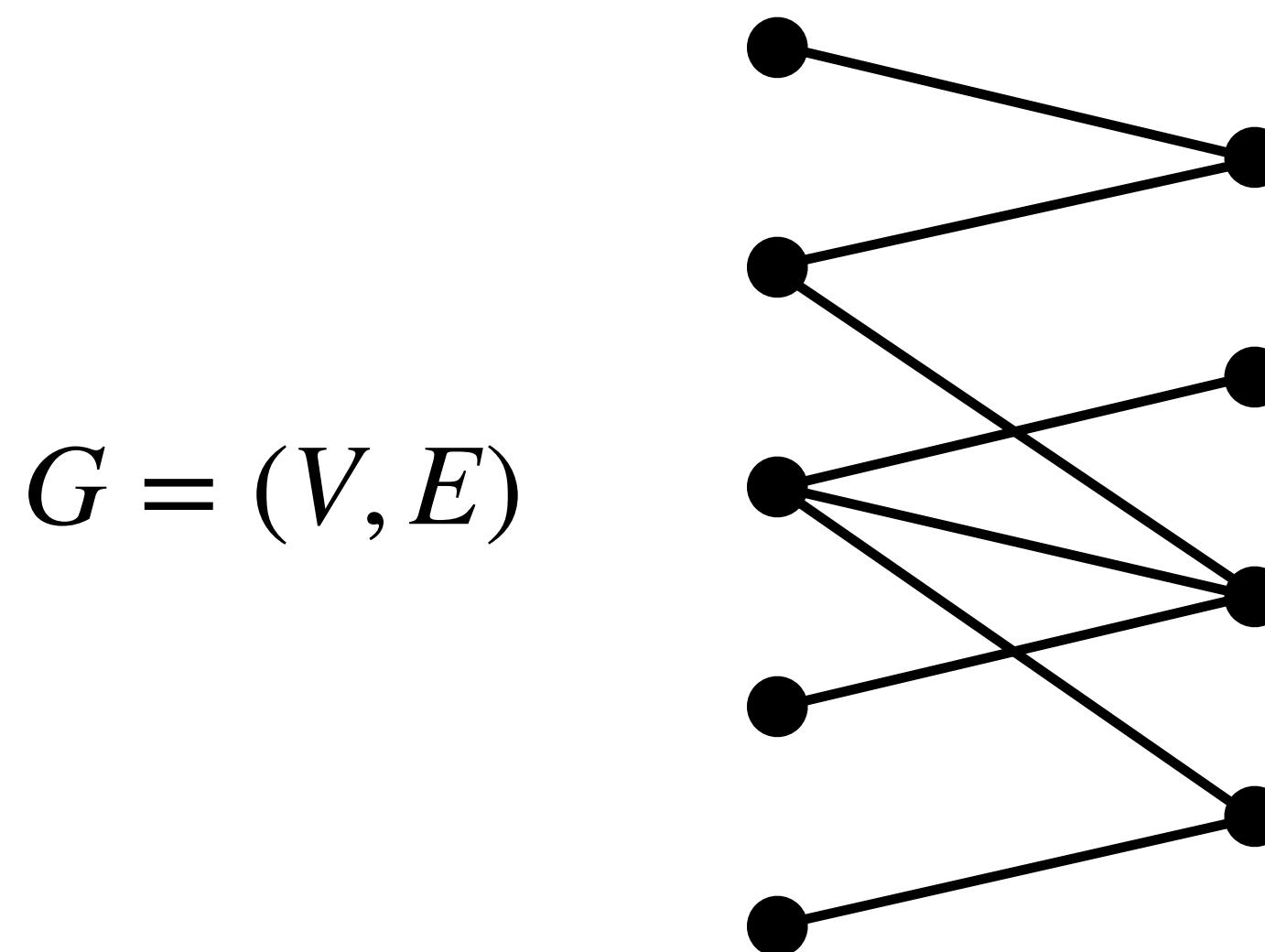
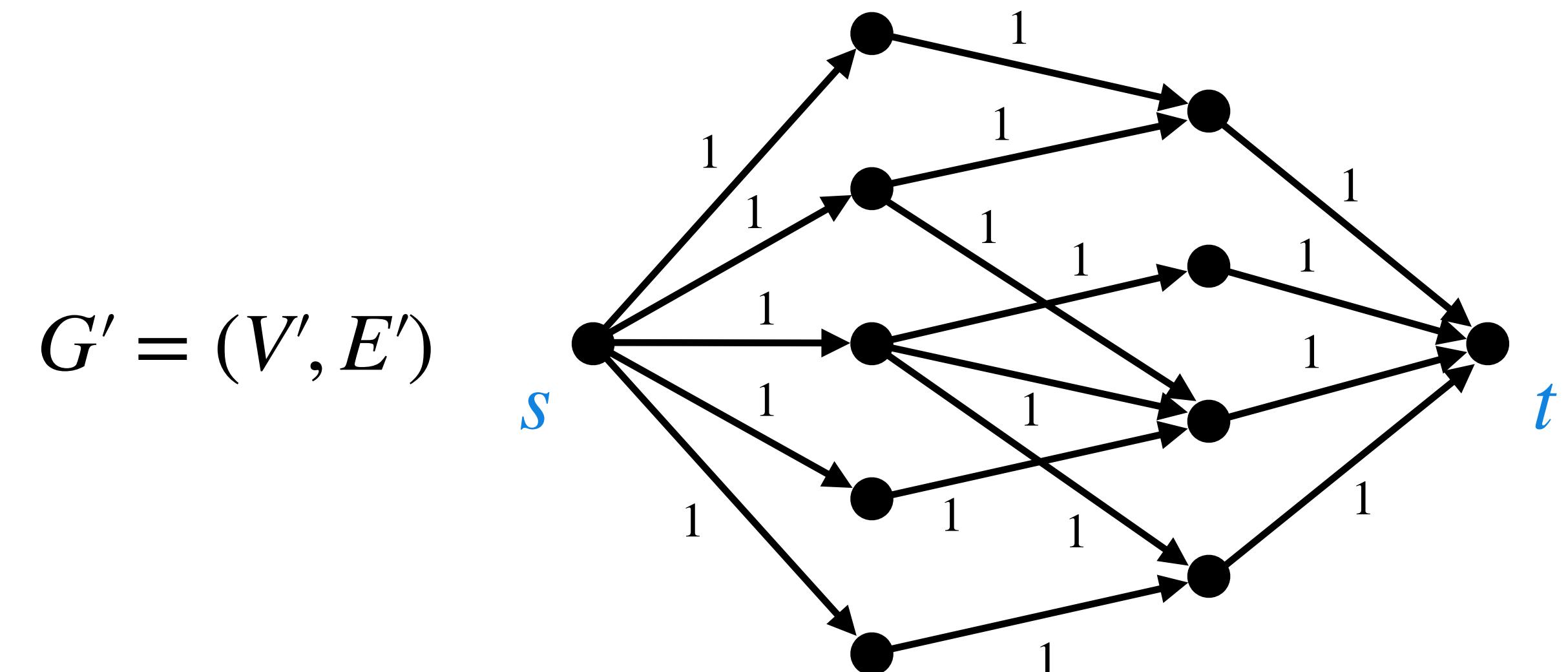
- $V' = V \cup \{s, t\}$, where s is the source and t is the sink.
- $E' = \{(s, u) : u \in L\}$



Bipartite Matching to Flow

For a bipartite graph $G = (V, E)$ with partition (L, R) we construct the corresponding flow network $G' = (V', E')$, where:

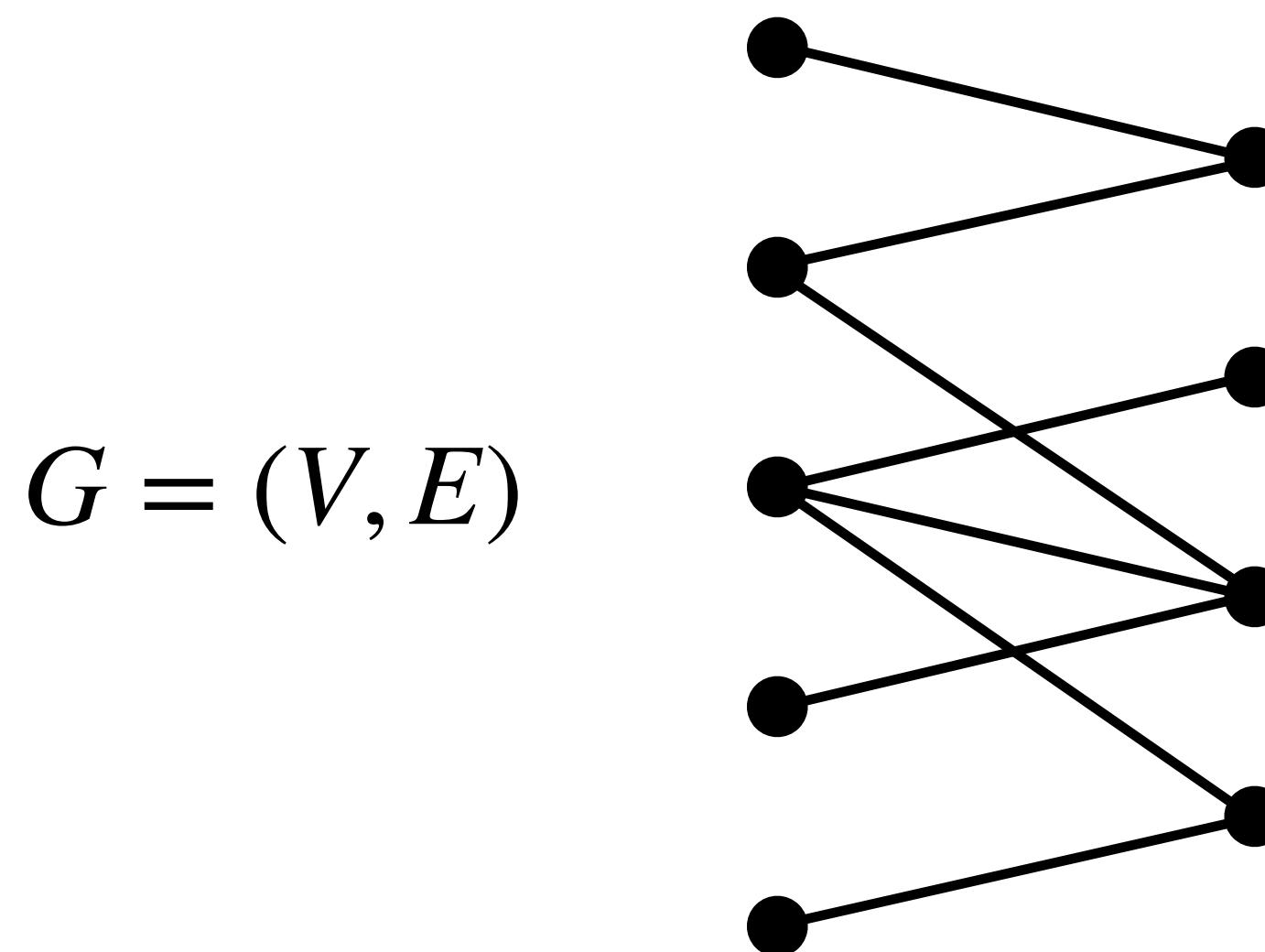
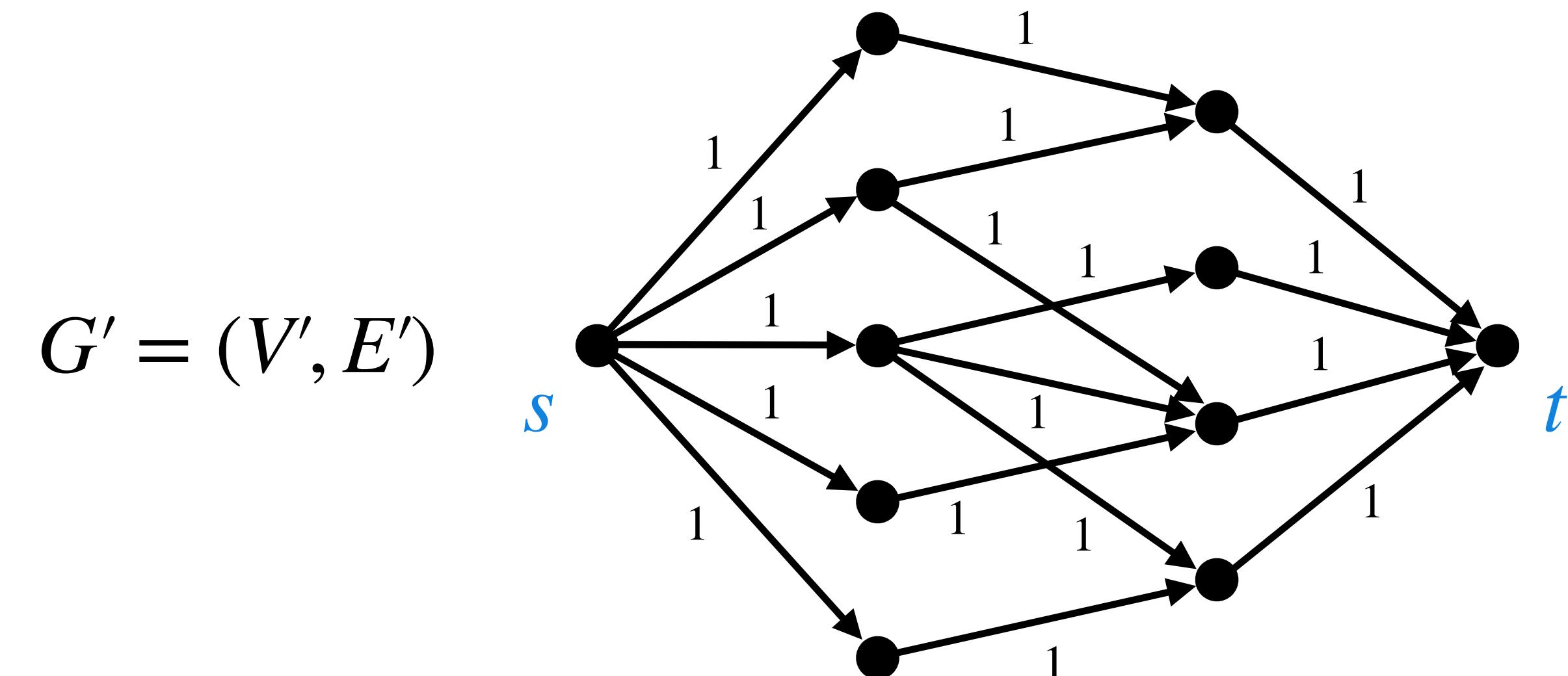
- $V' = V \cup \{s, t\}$, where s is the source and t is the sink.
- $E' = \{(s, u) : u \in L\} \cup \{(u, v) : u \in L, v \in R, \{u, v\} \in E\}$



Bipartite Matching to Flow

For a bipartite graph $G = (V, E)$ with partition (L, R) we construct the corresponding flow network $G' = (V', E')$, where:

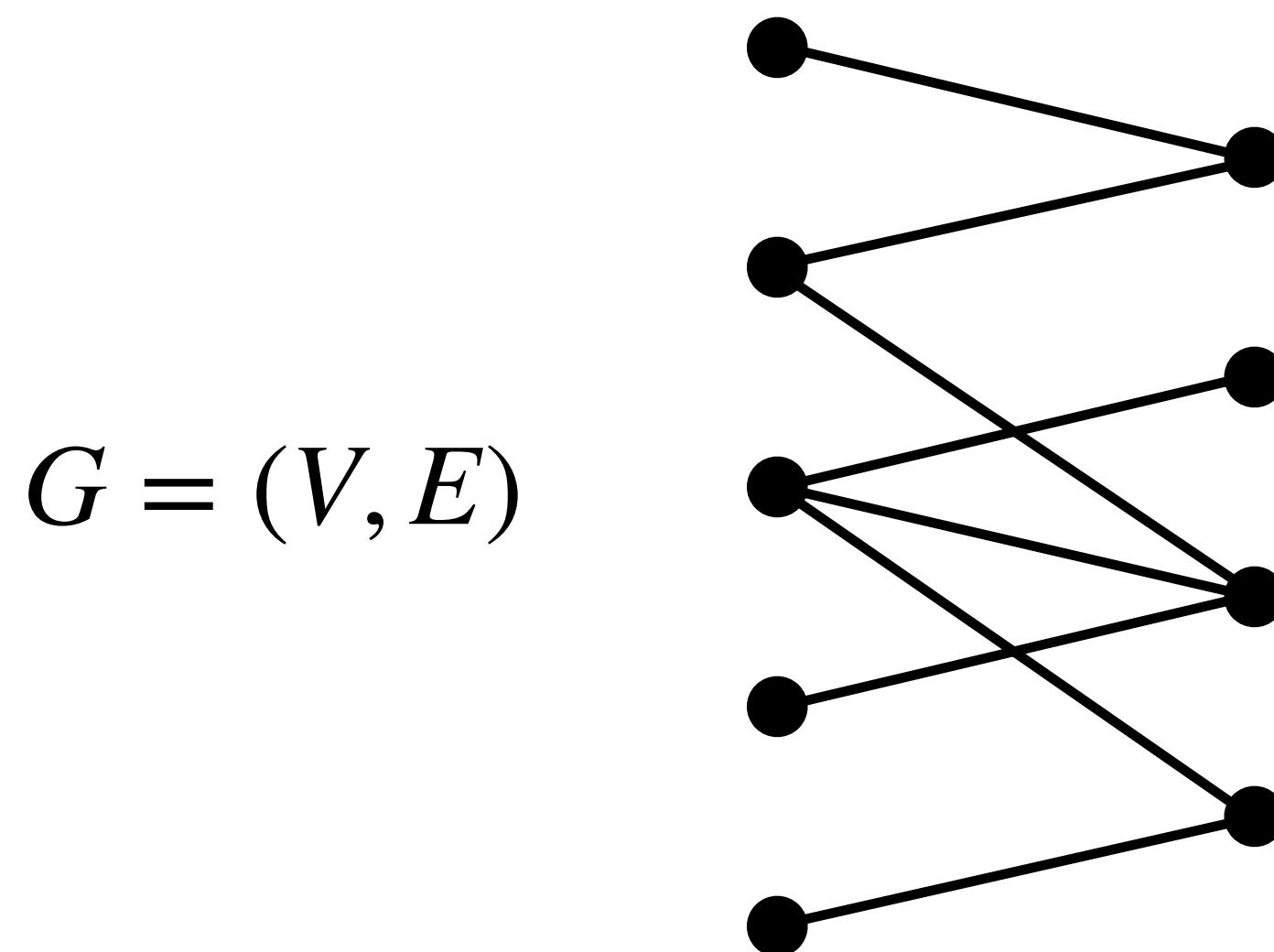
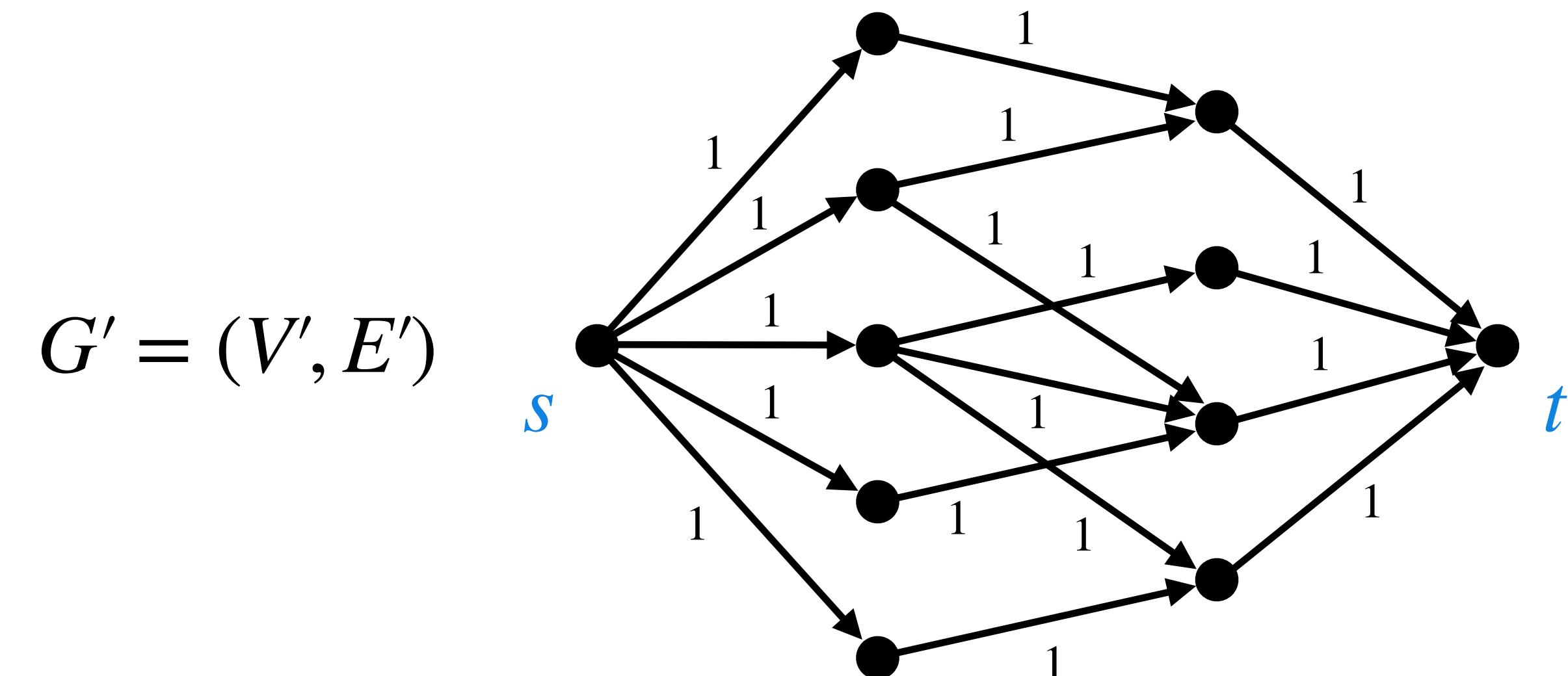
- $V' = V \cup \{s, t\}$, where s is the source and t is the sink.
- $E' = \{(s, u) : u \in L\} \cup \{(u, v) : u \in L, v \in R, \{u, v\} \in E\} \cup \{(v, t) : v \in R\}$



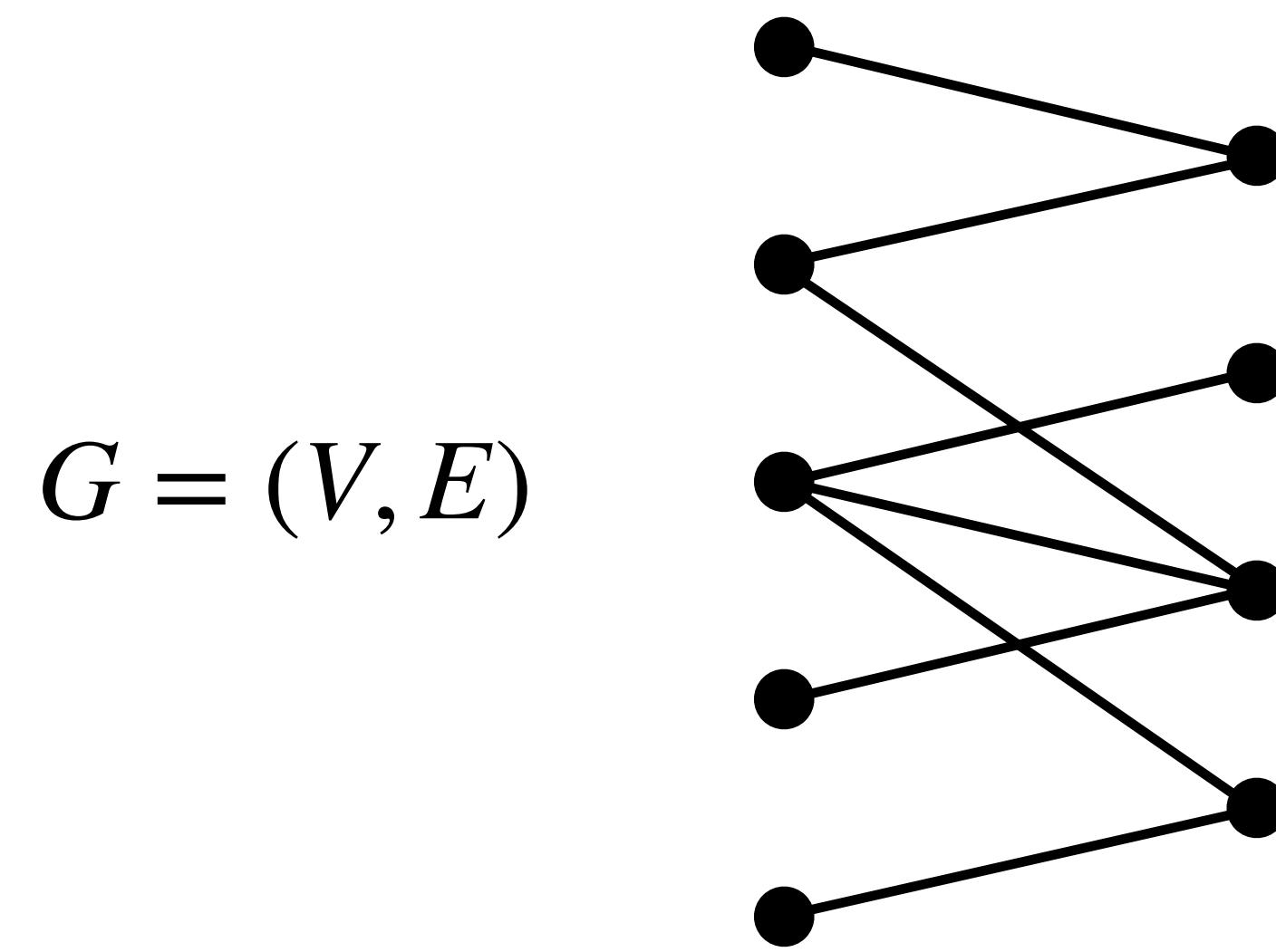
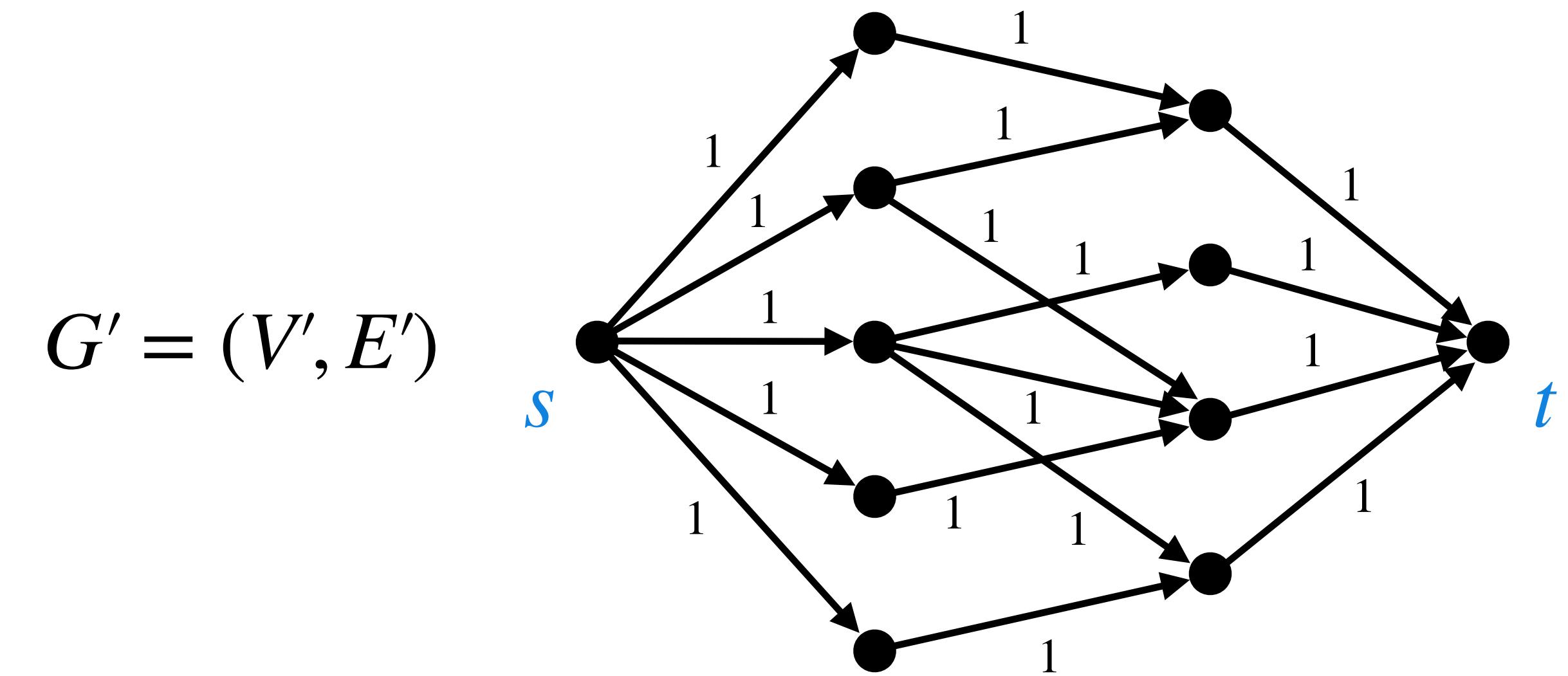
Bipartite Matching to Flow

For a bipartite graph $G = (V, E)$ with partition (L, R) we construct the corresponding flow network $G' = (V', E')$, where:

- $V' = V \cup \{s, t\}$, where s is the source and t is the sink.
- $E' = \{(s, u) : u \in L\} \cup \{(u, v) : u \in L, v \in R, \{u, v\} \in E\} \cup \{(v, t) : v \in R\}$
- Every edge has capacity **one**.

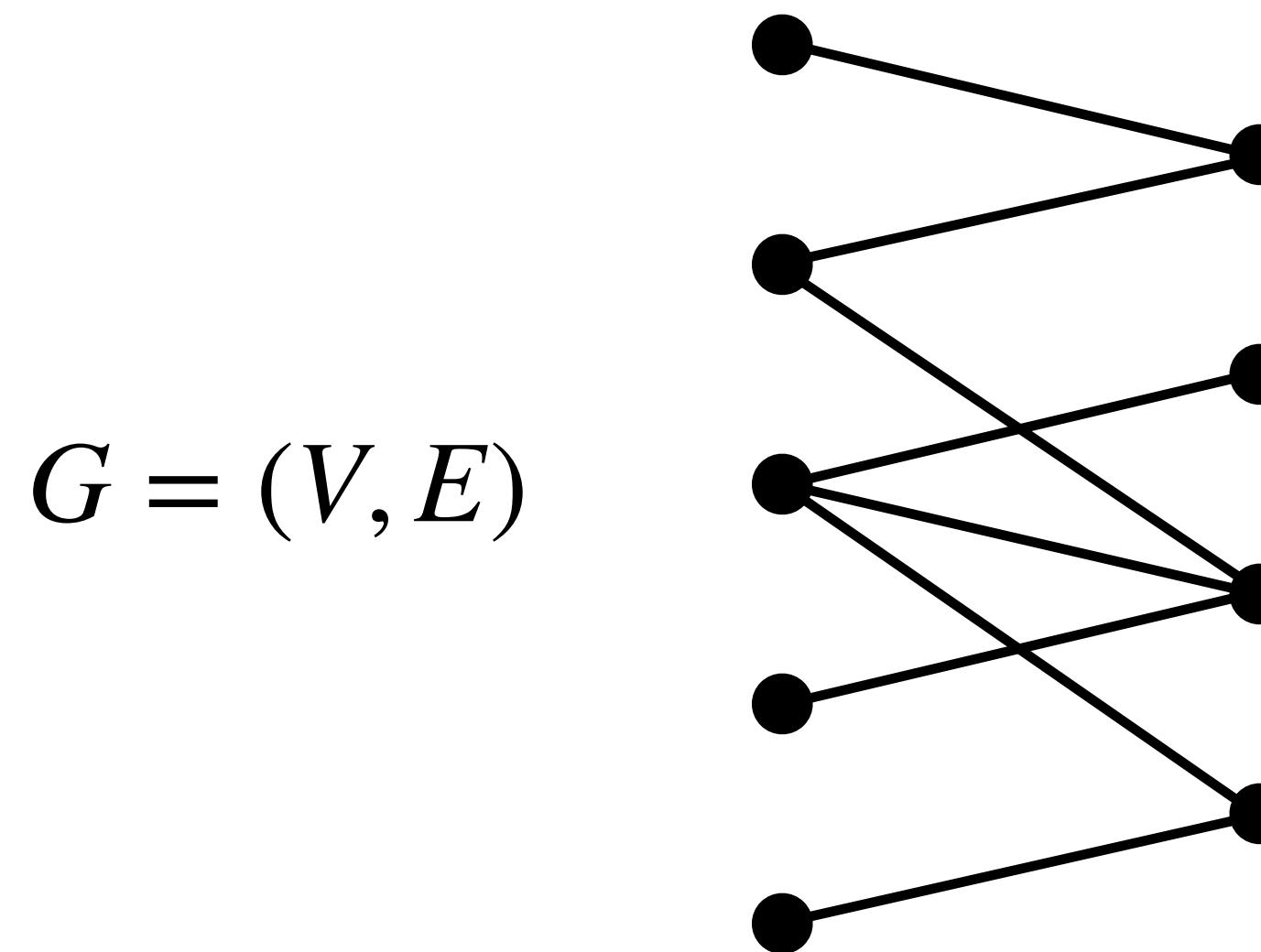
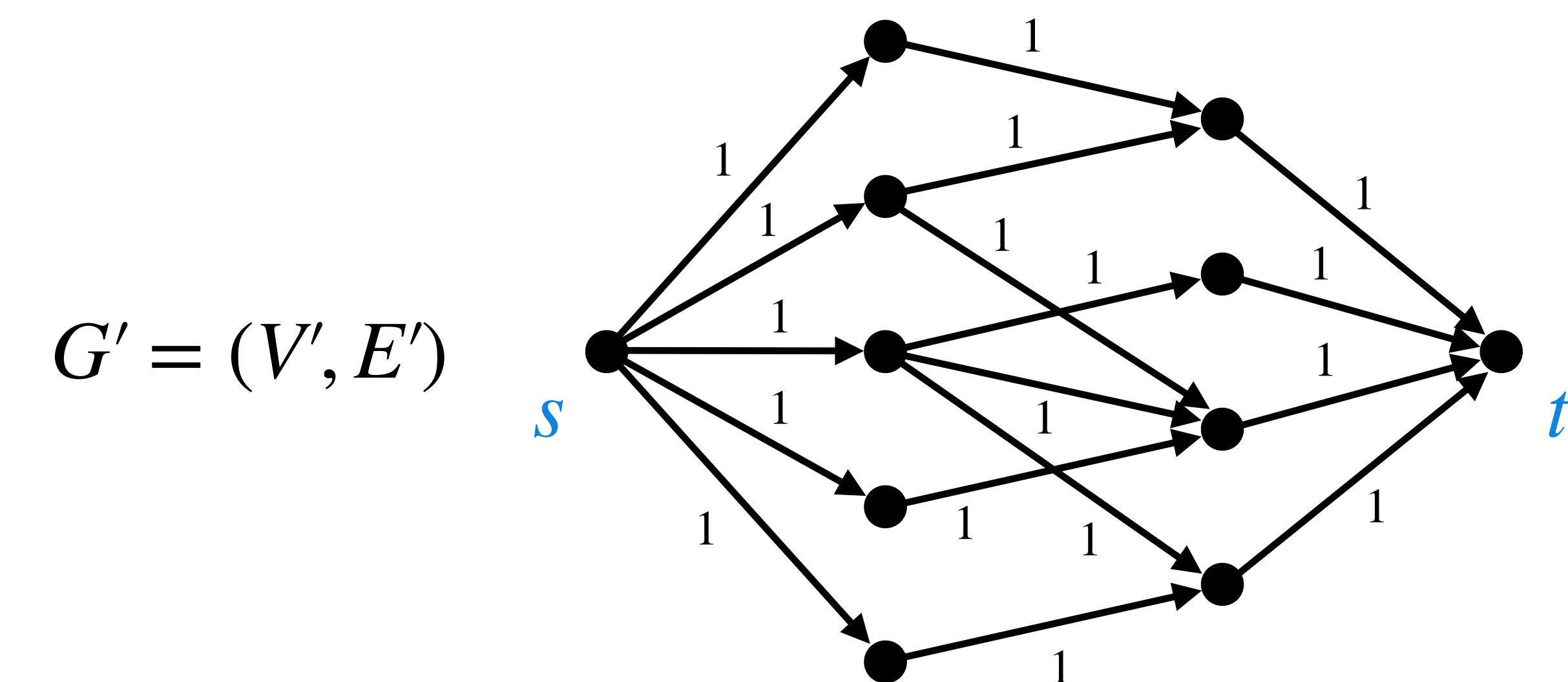


Bipartite Matching to Flow

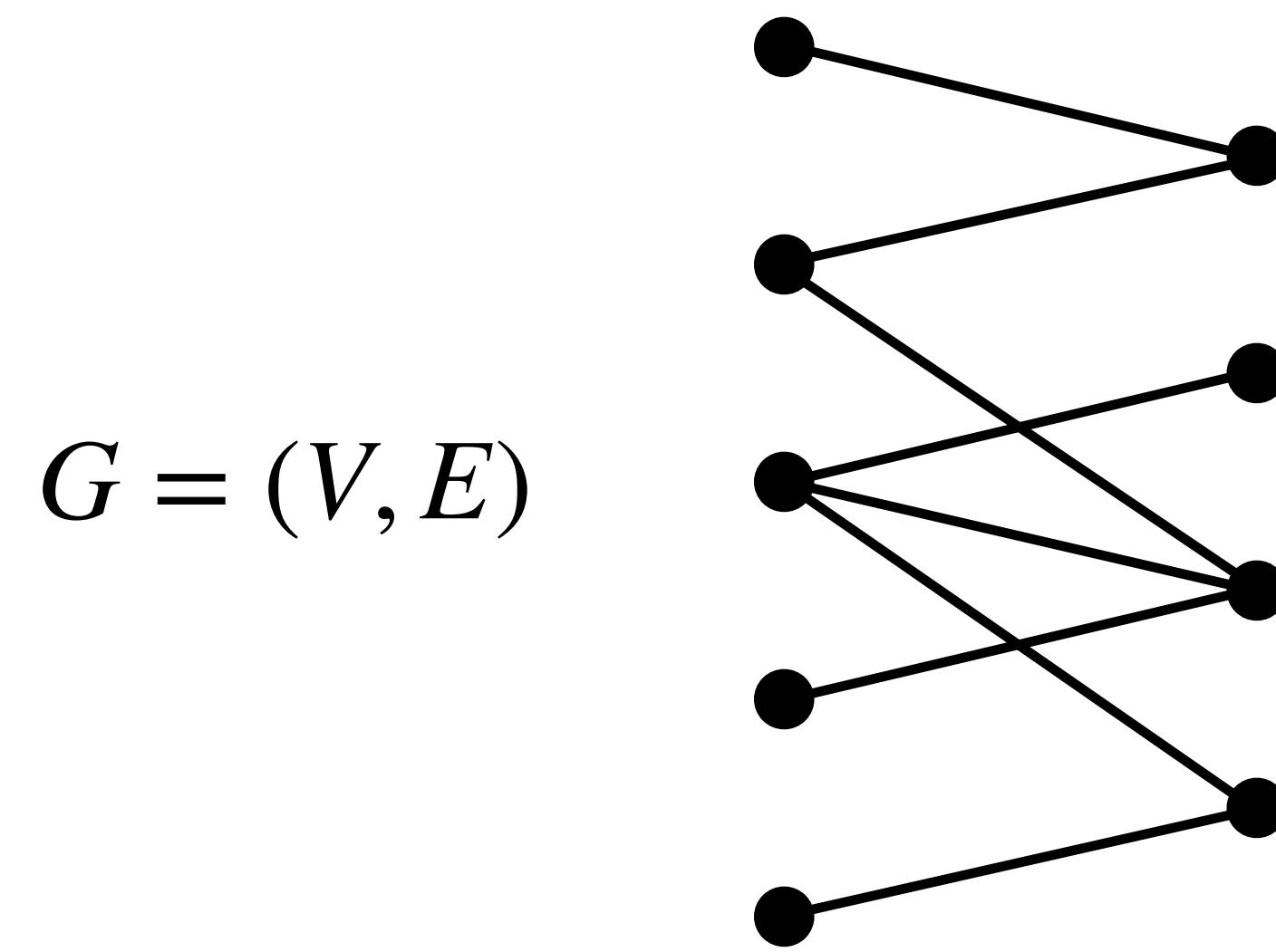
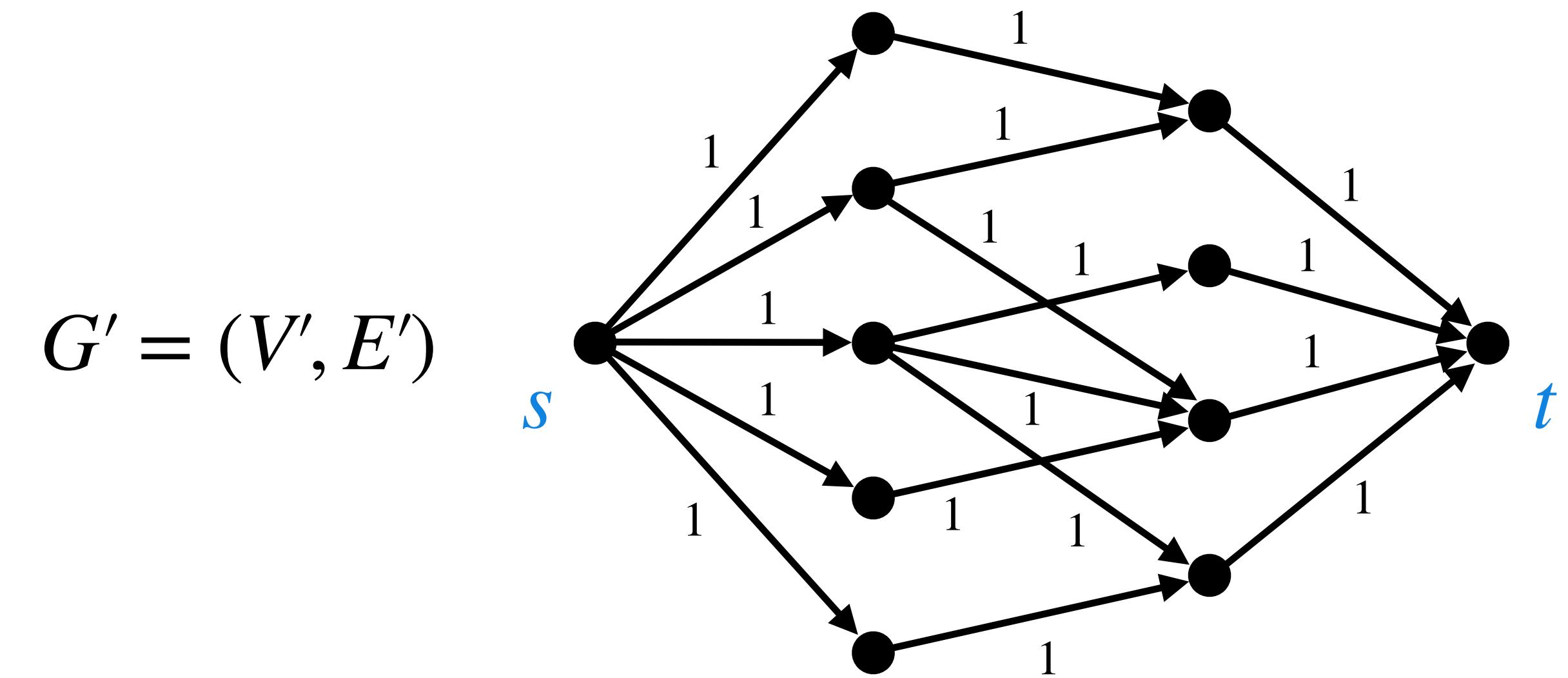


Bipartite Matching to Flow

Goal: We want a way to compute maximum matching in G by computing max-flow in G' .

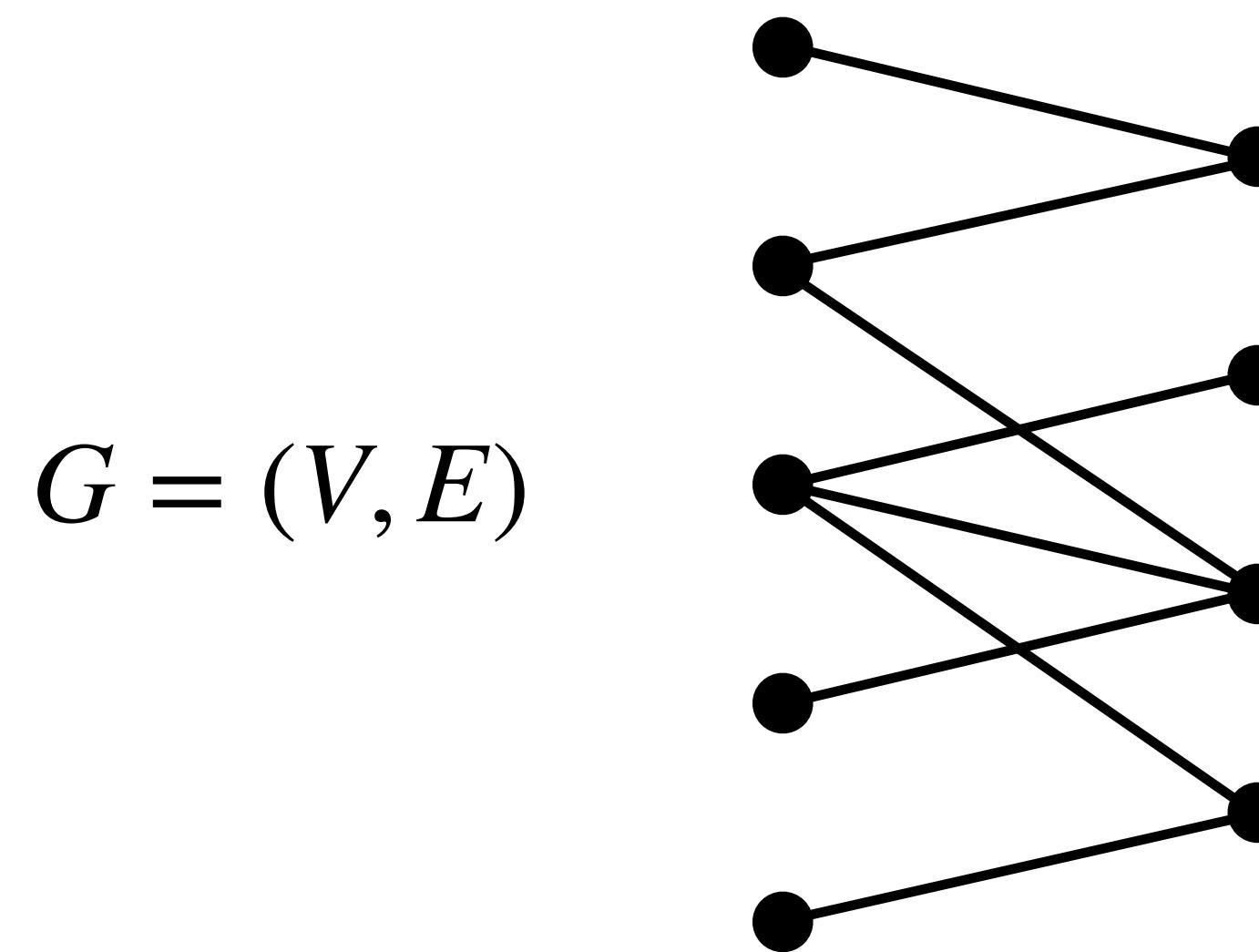
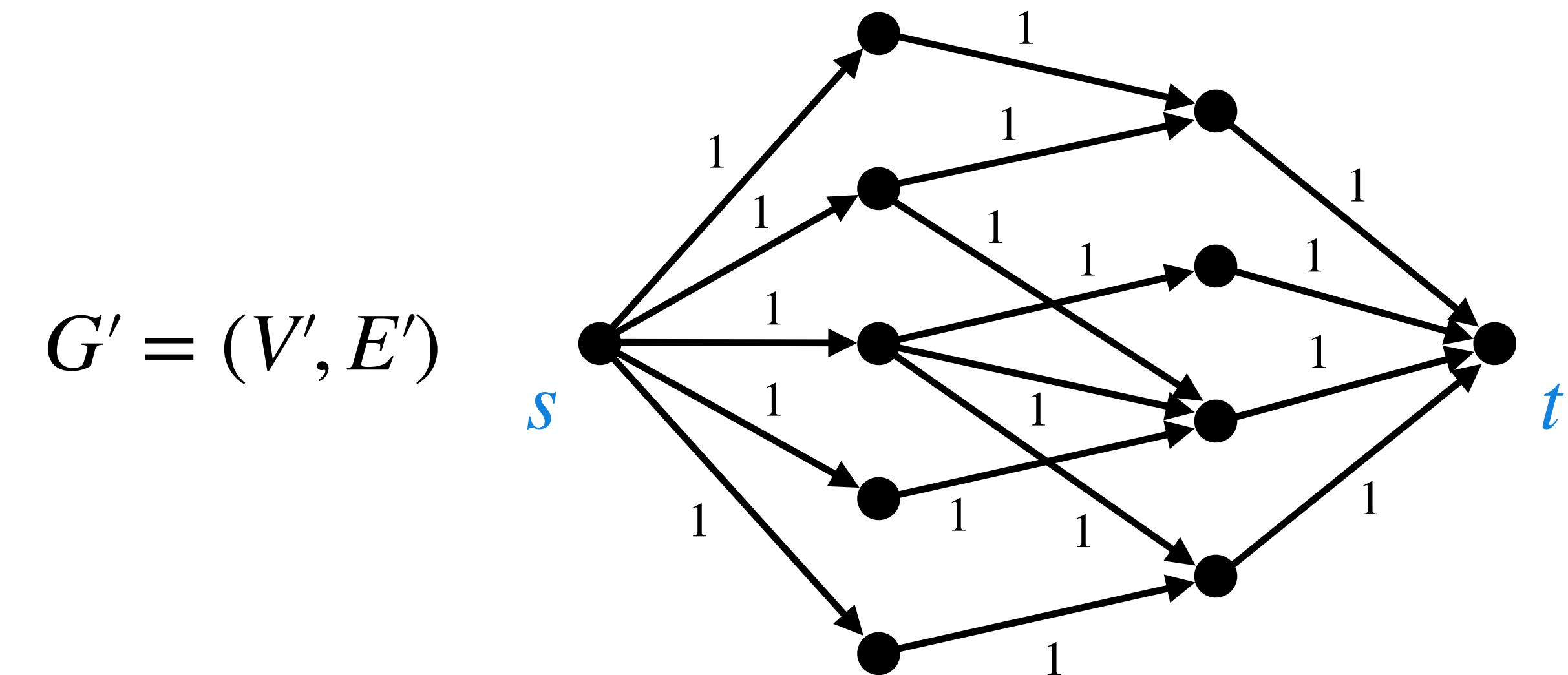


Bipartite Matching to Flow



Bipartite Matching to Flow

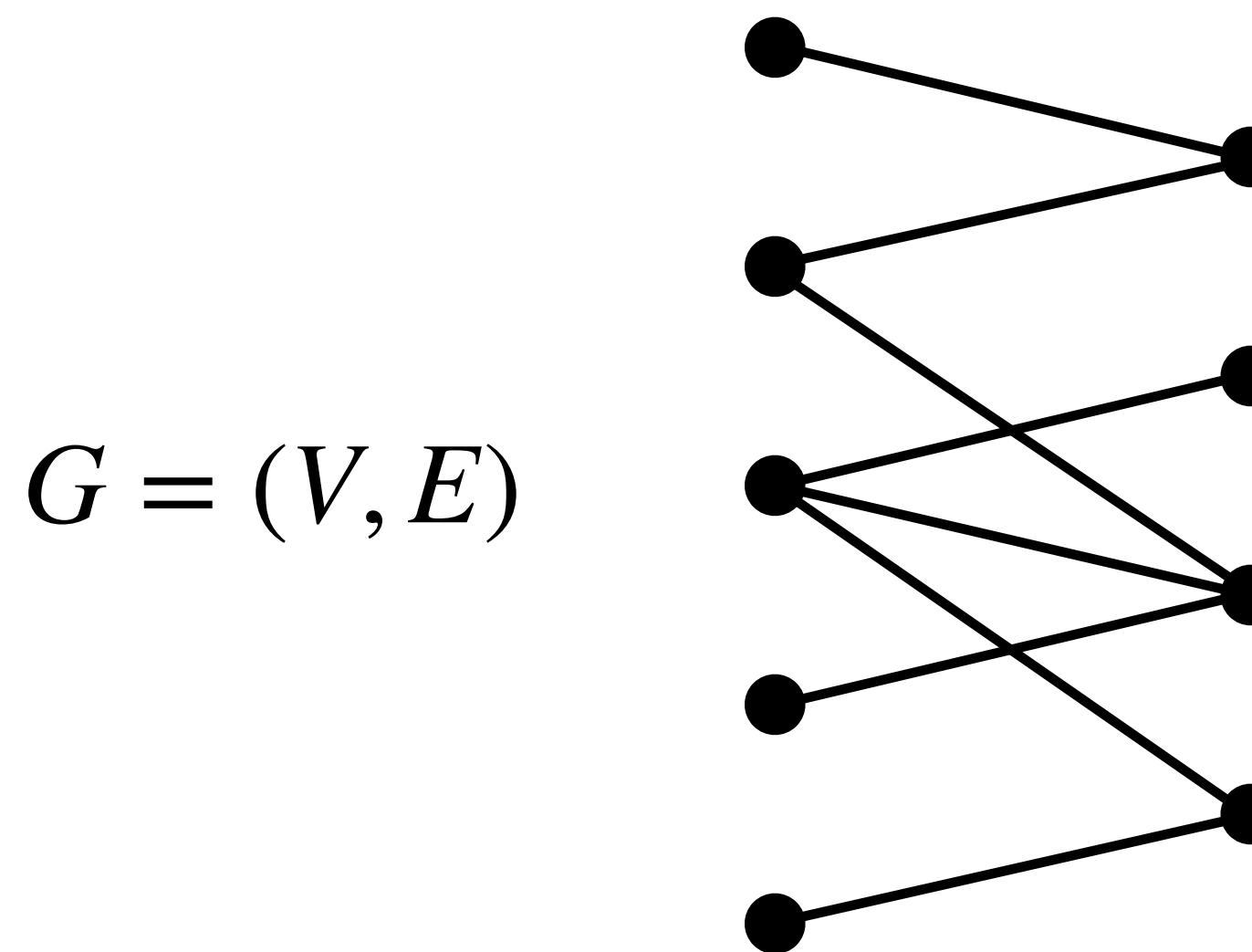
Claim: If M is a matching in G , then there is an integer-valued f in G' with value $|f| = |M|$.



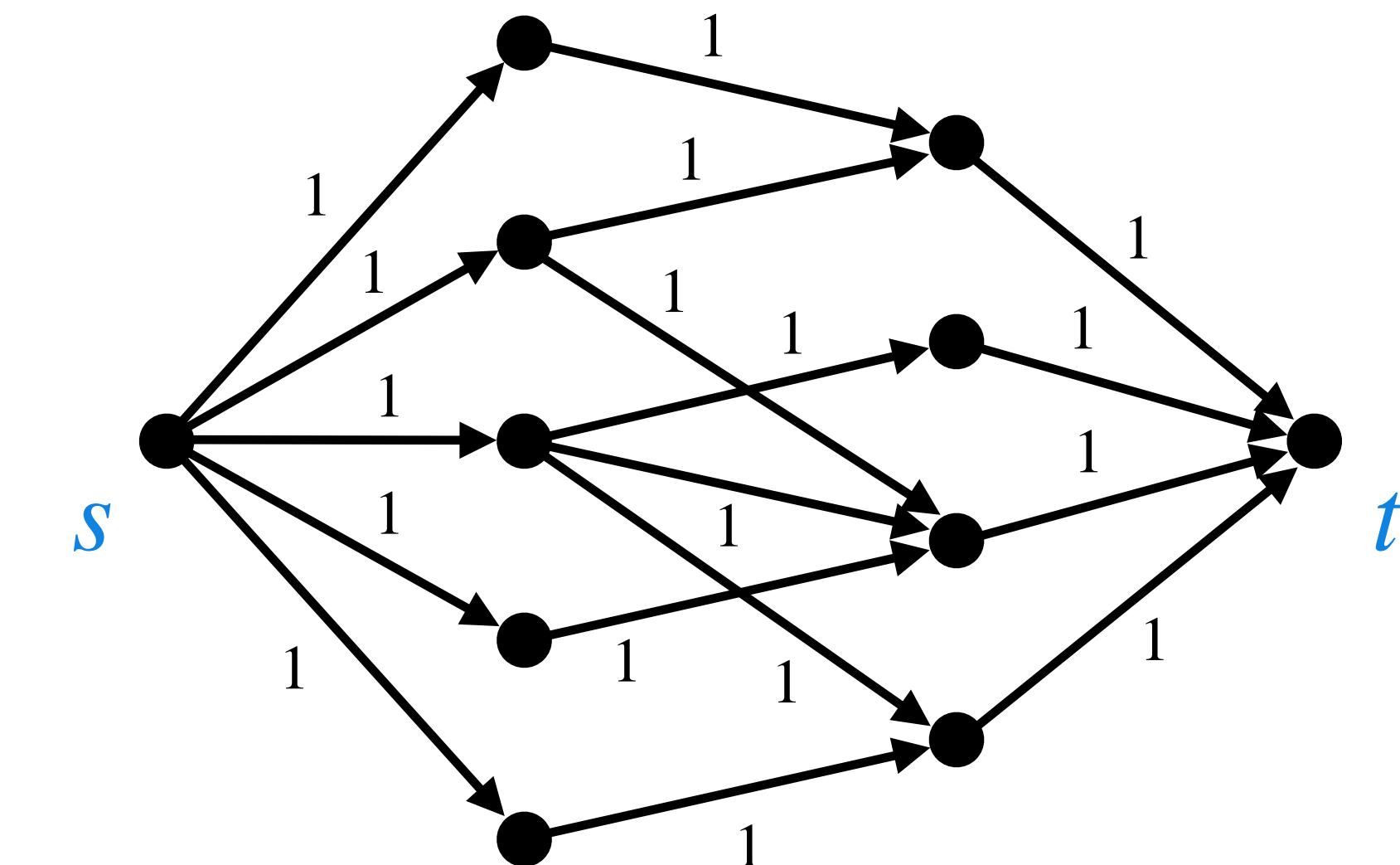
Bipartite Matching to Flow

Claim: If M is a matching in G , then there is an integer-valued f in G' with value $|f| = |M|$.

Flow where $f(u, v)$ is an integer for every (u, v) .

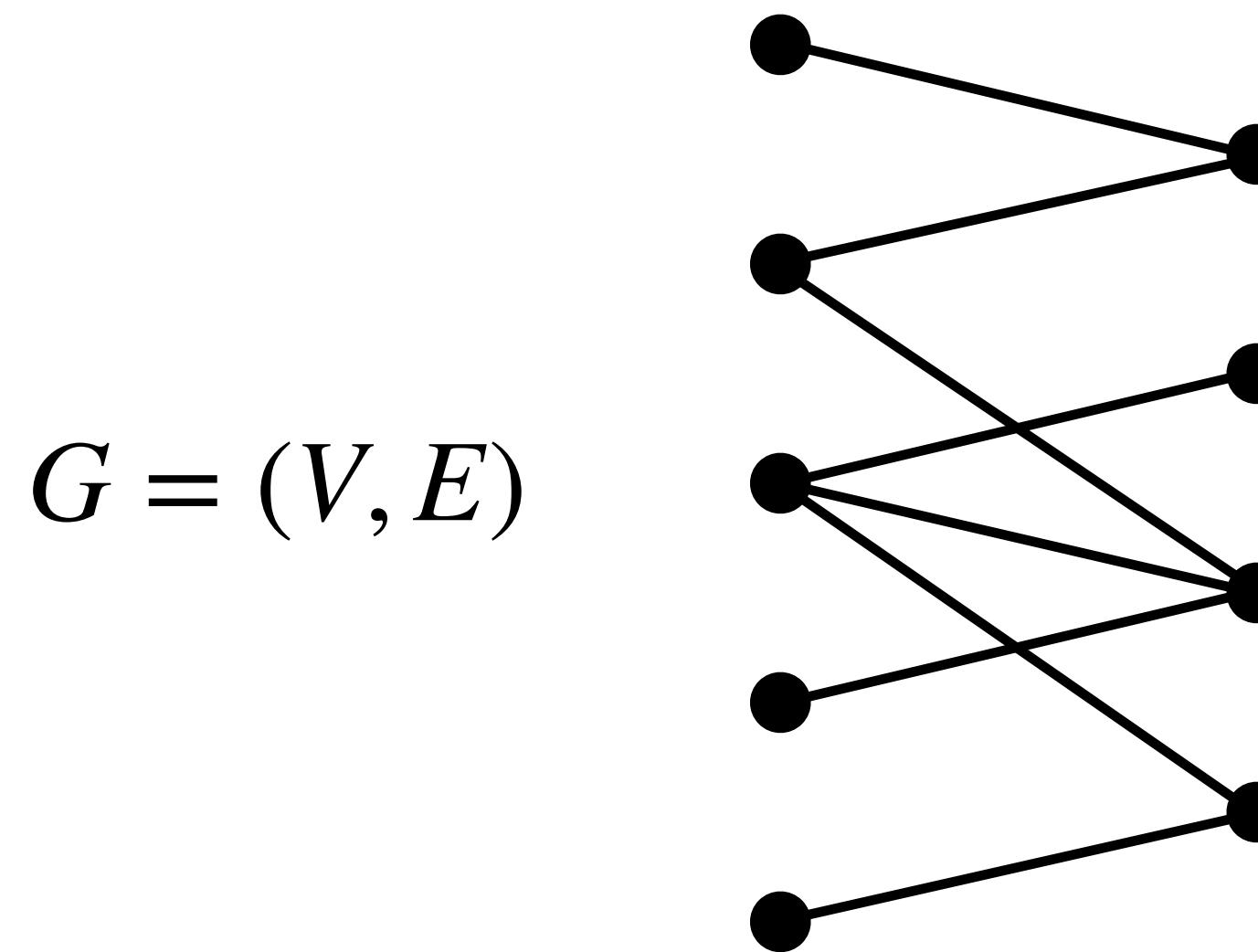
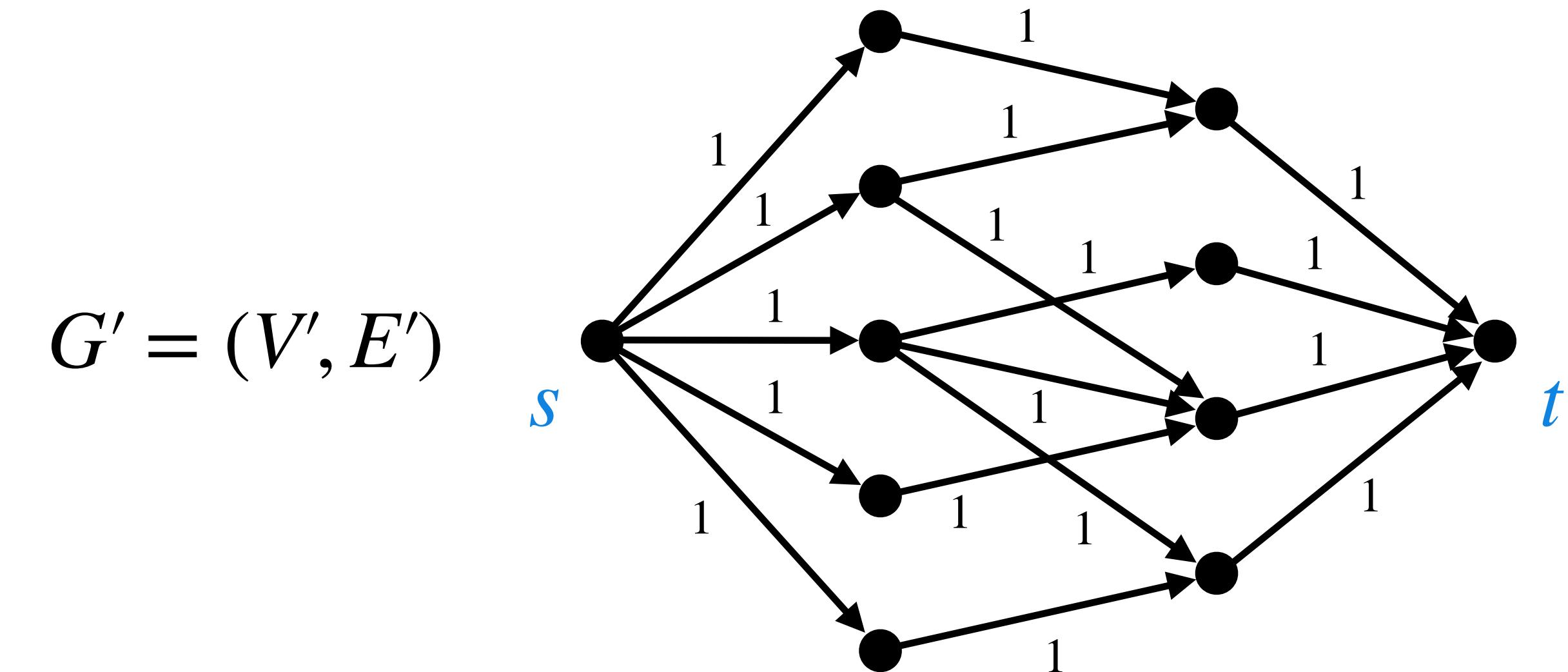


$G' = (V', E')$



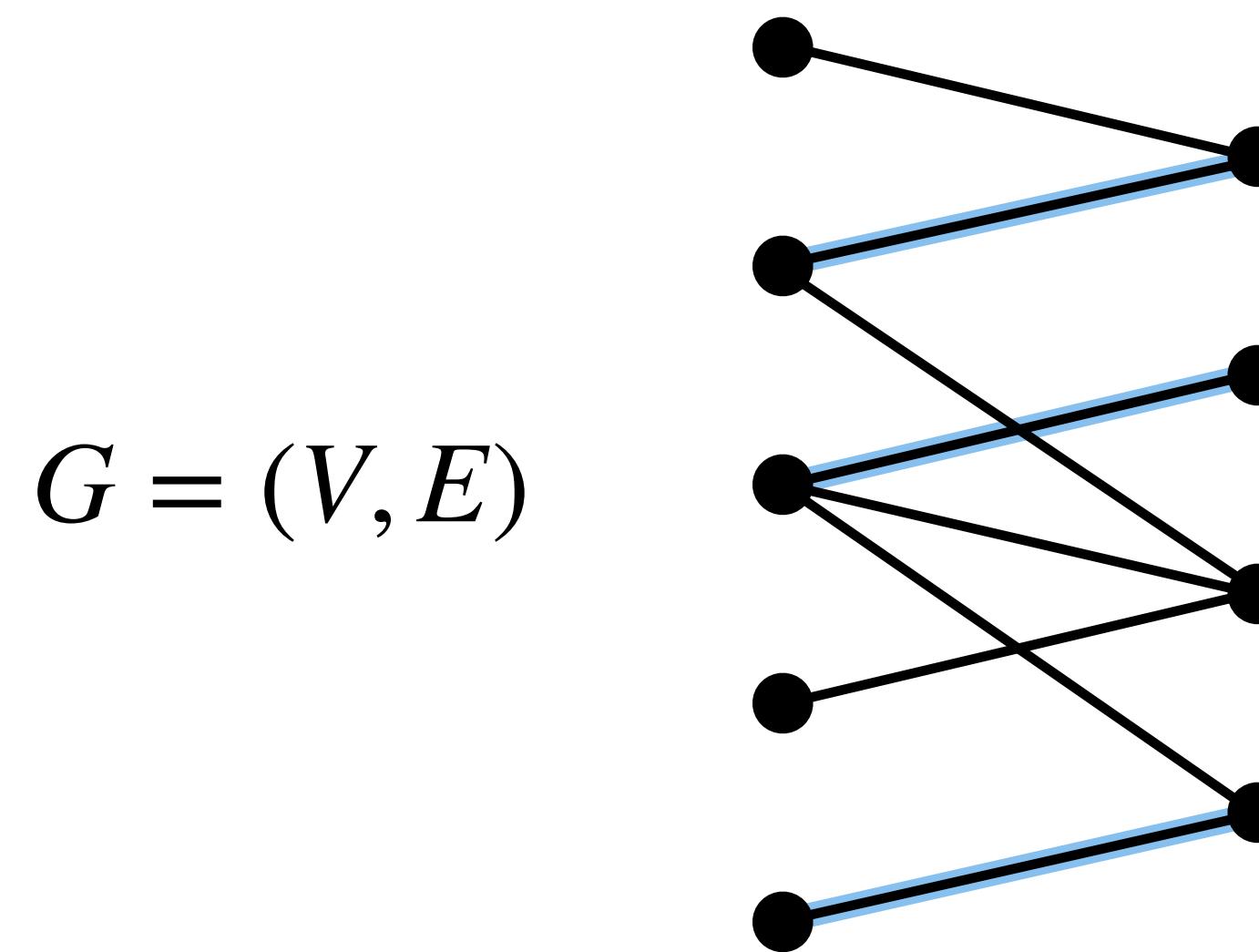
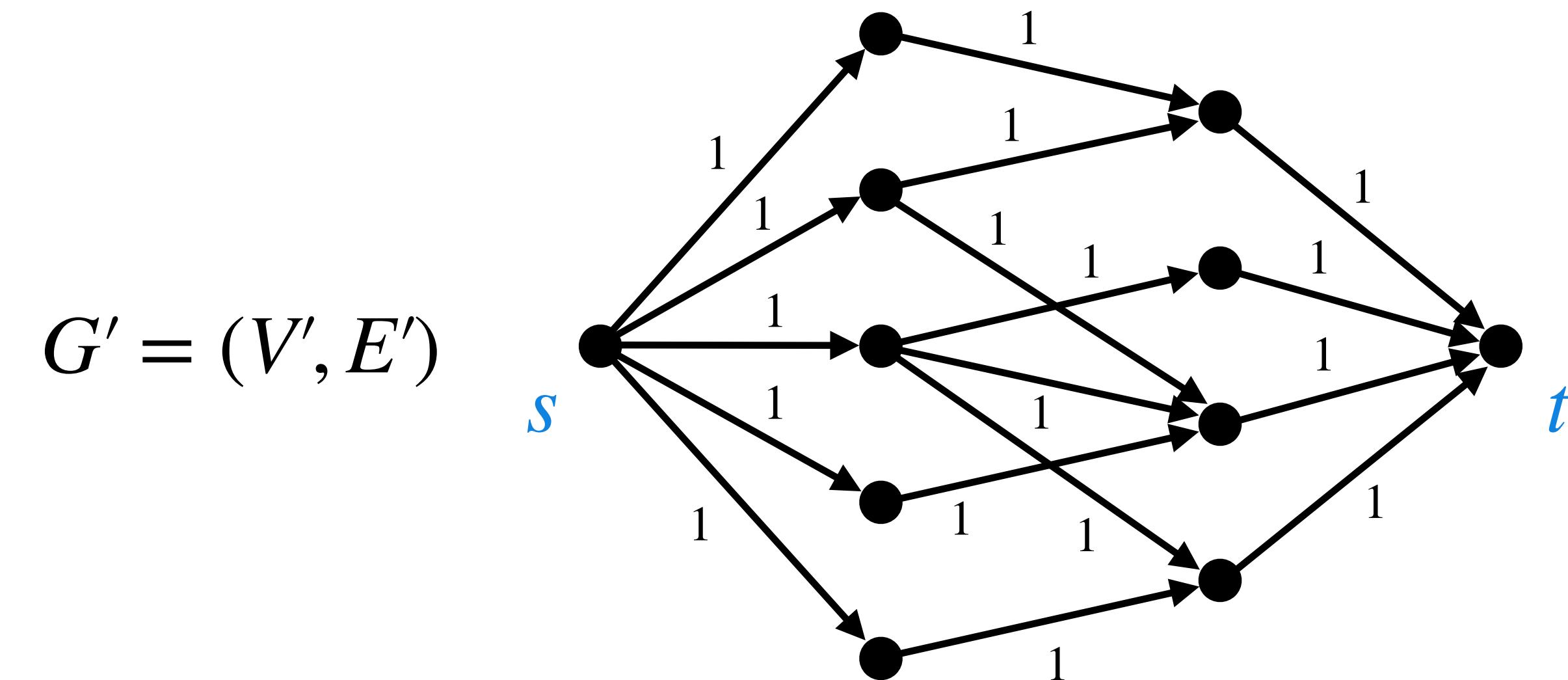
Bipartite Matching to Flow

Claim: If M is a matching in G , then there is an integer-valued f in G' with value $|f| = |M|$.



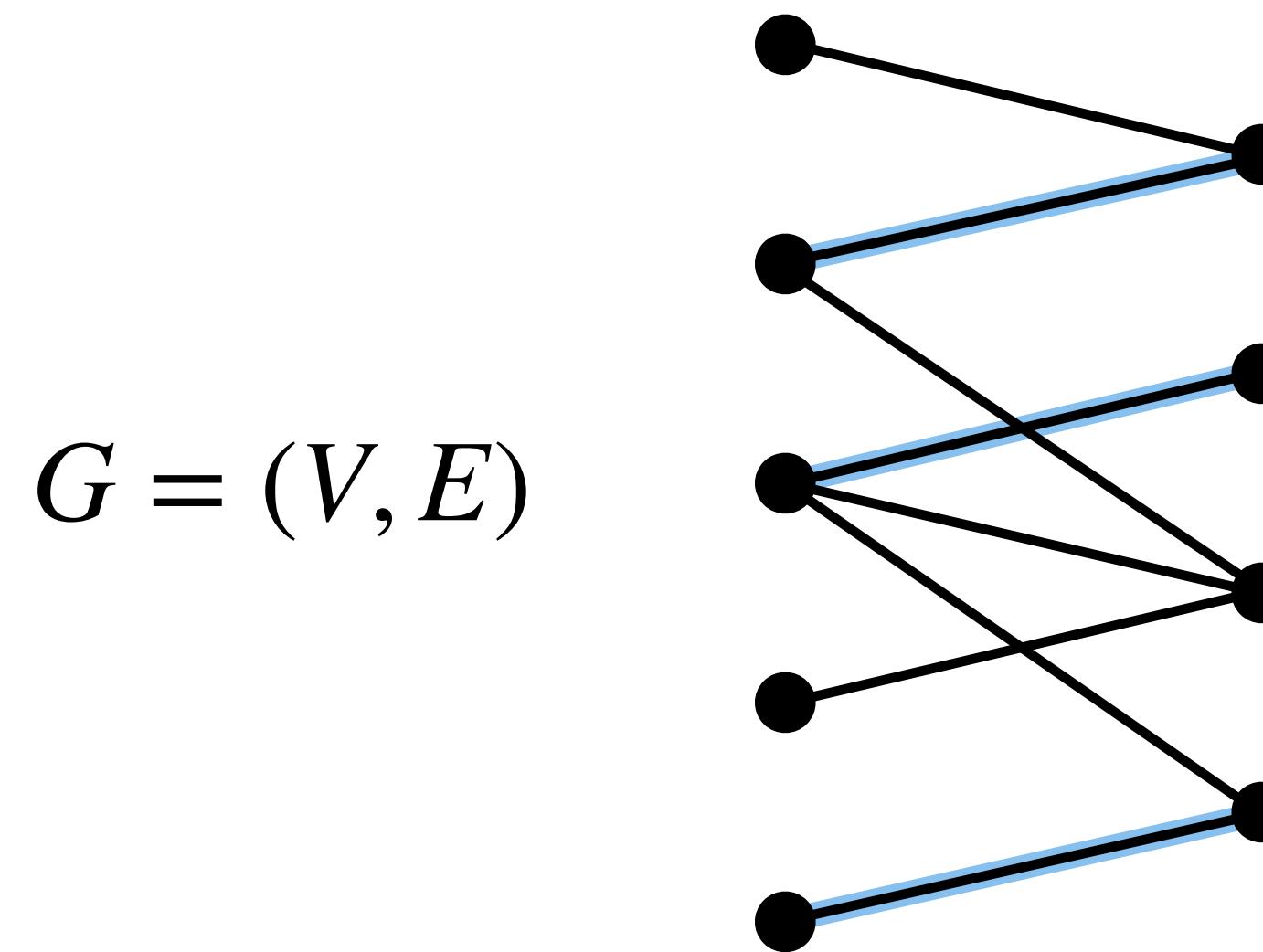
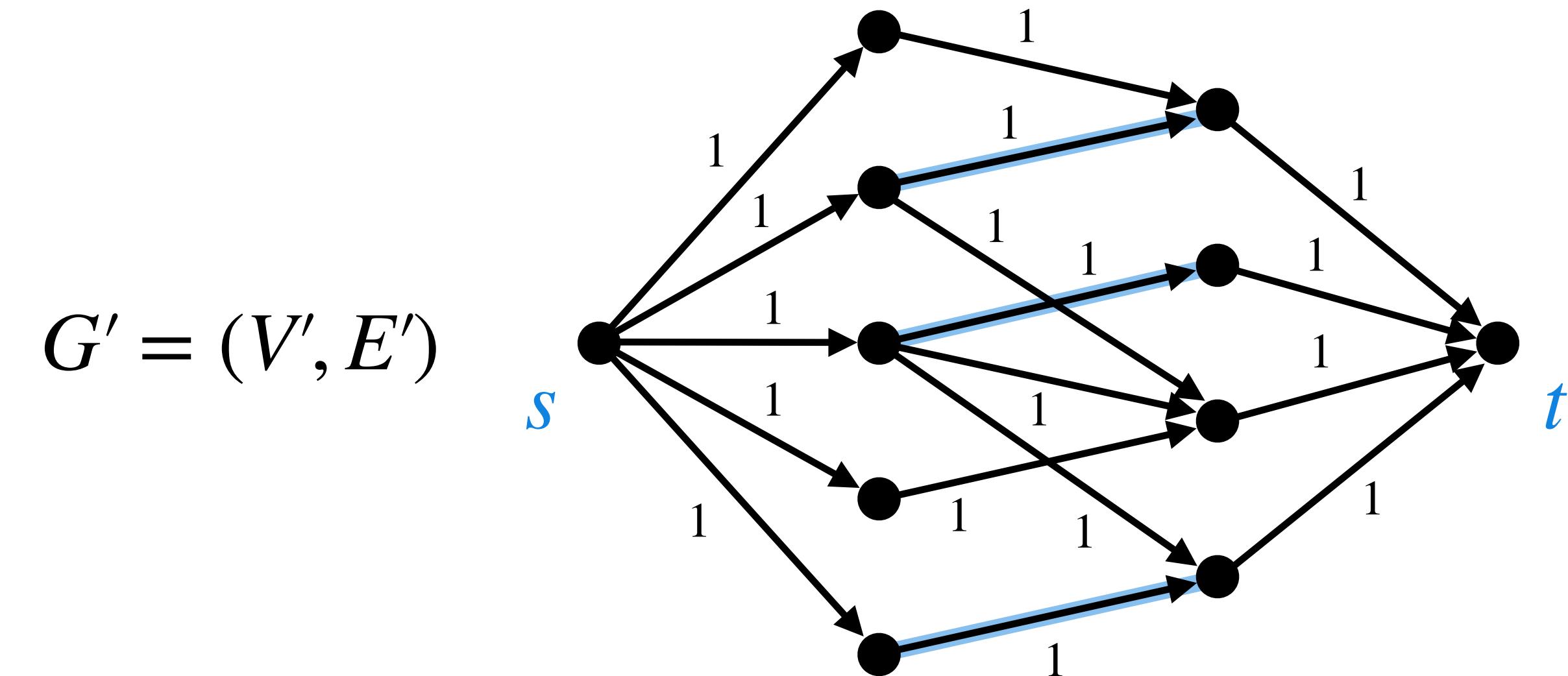
Bipartite Matching to Flow

Claim: If M is a matching in G , then there is an integer-valued f in G' with value $|f| = |M|$.



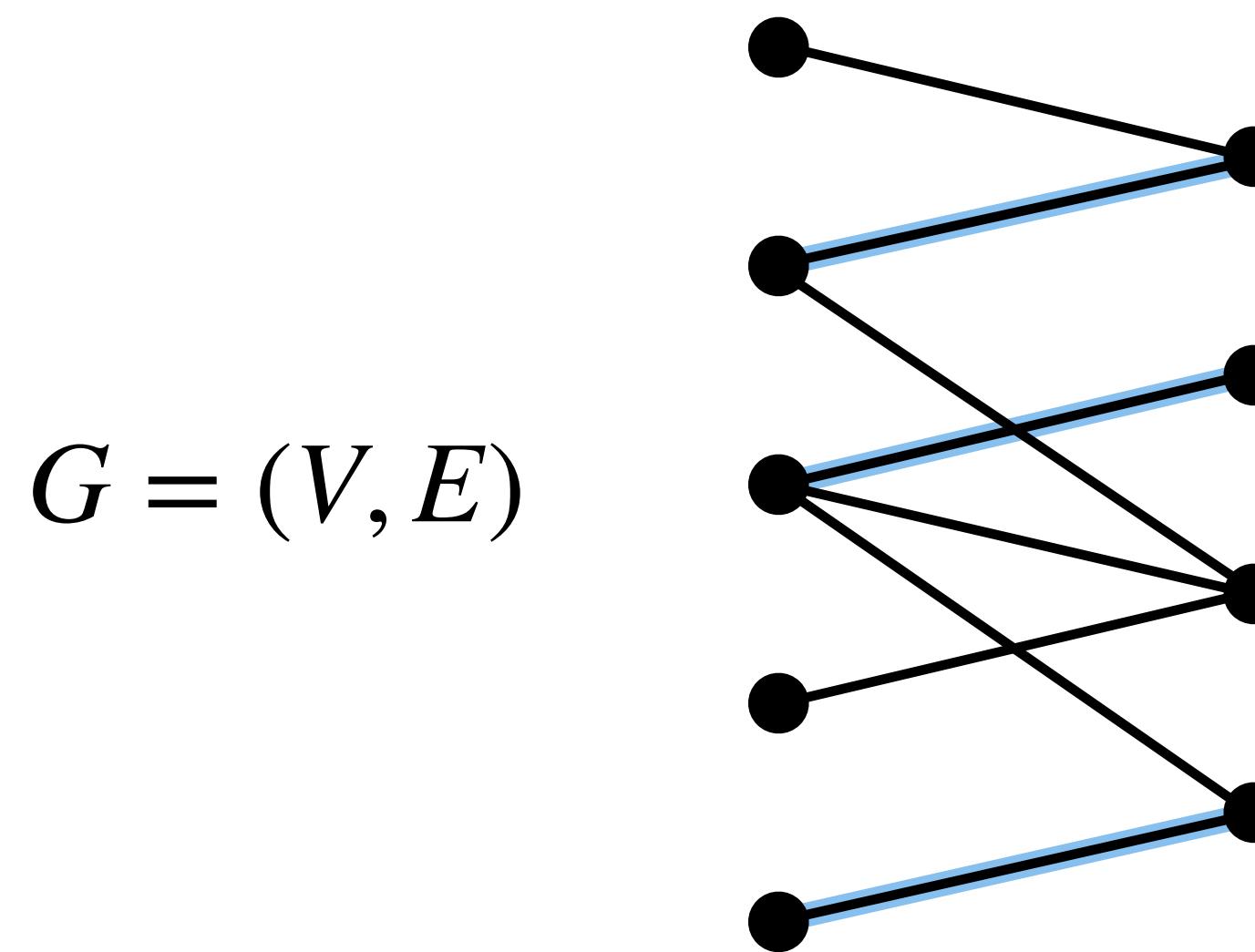
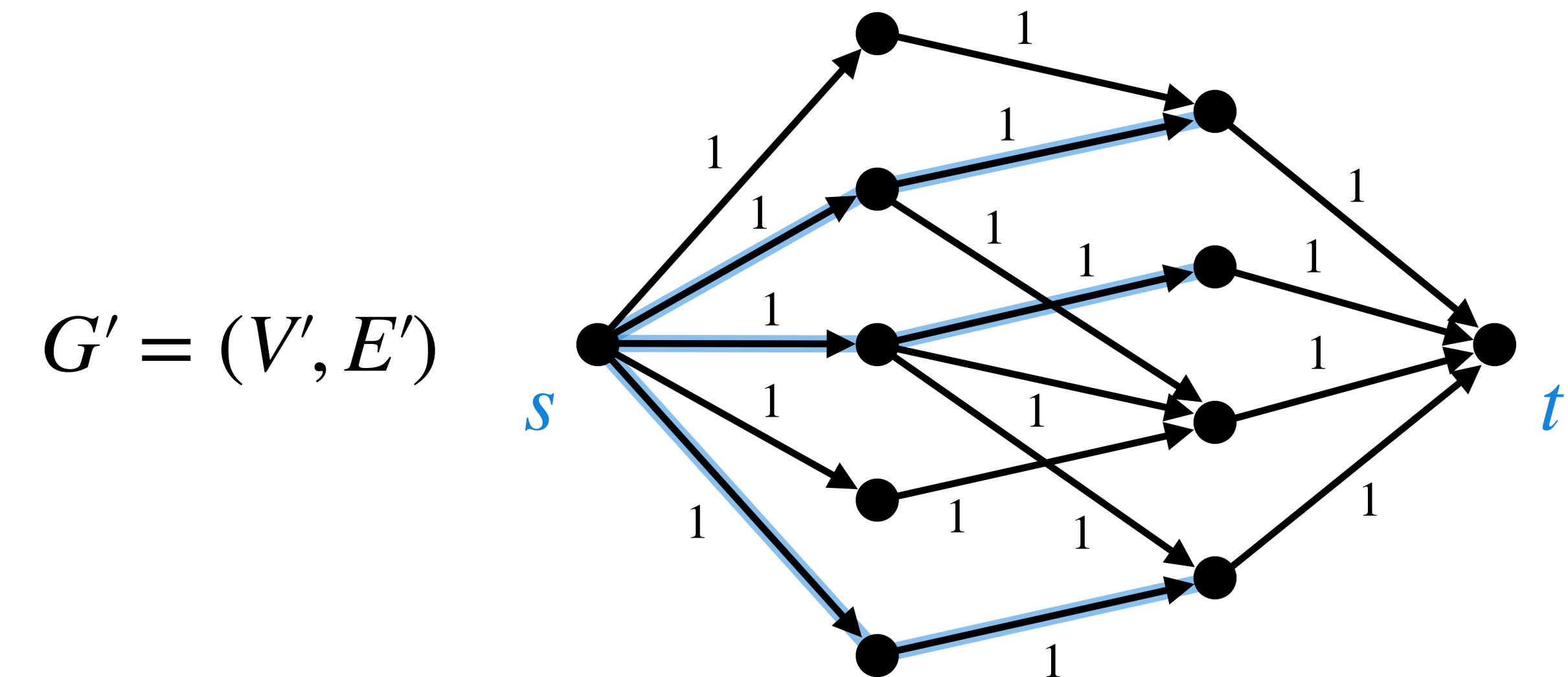
Bipartite Matching to Flow

Claim: If M is a matching in G , then there is an integer-valued f in G' with value $|f| = |M|$.



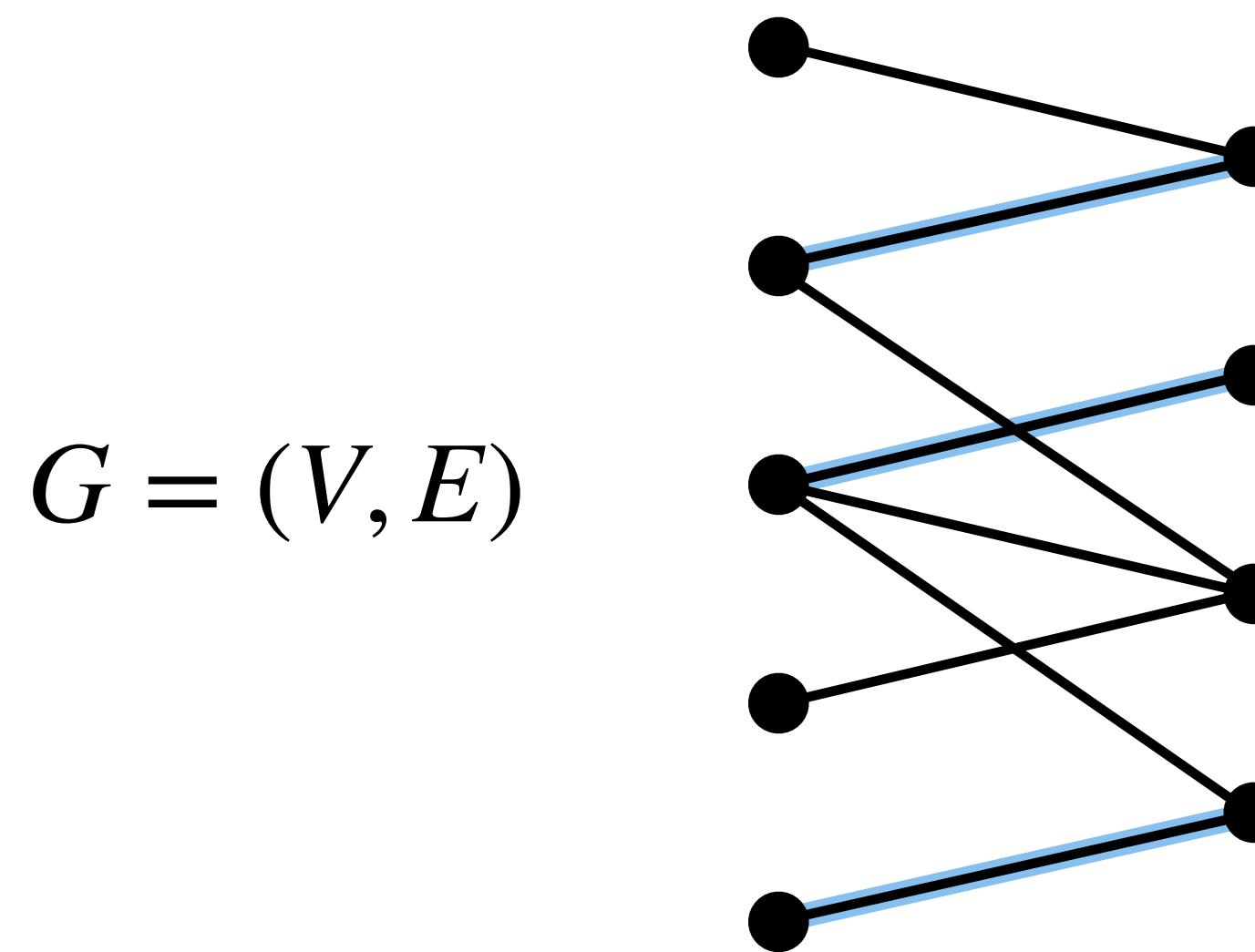
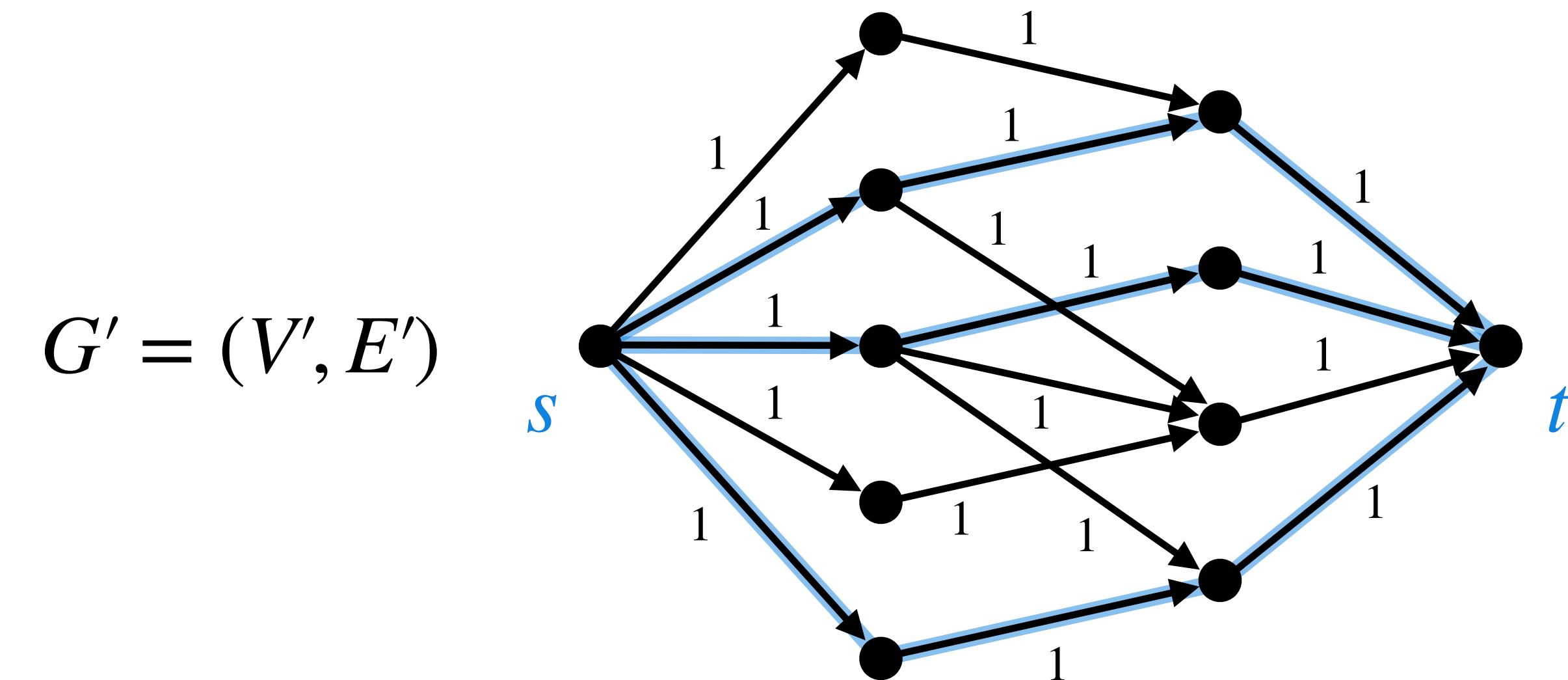
Bipartite Matching to Flow

Claim: If M is a matching in G , then there is an integer-valued f in G' with value $|f| = |M|$.



Bipartite Matching to Flow

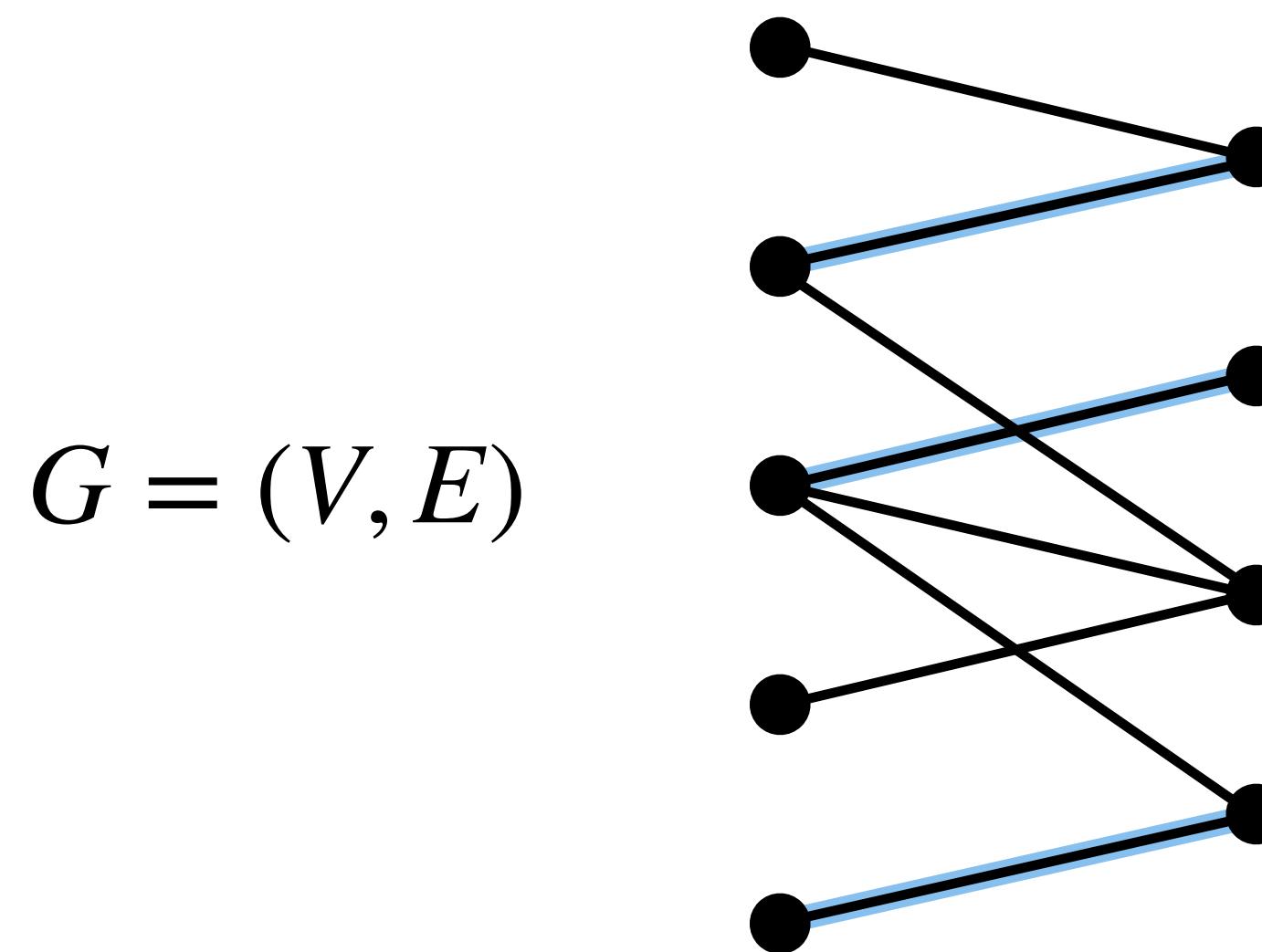
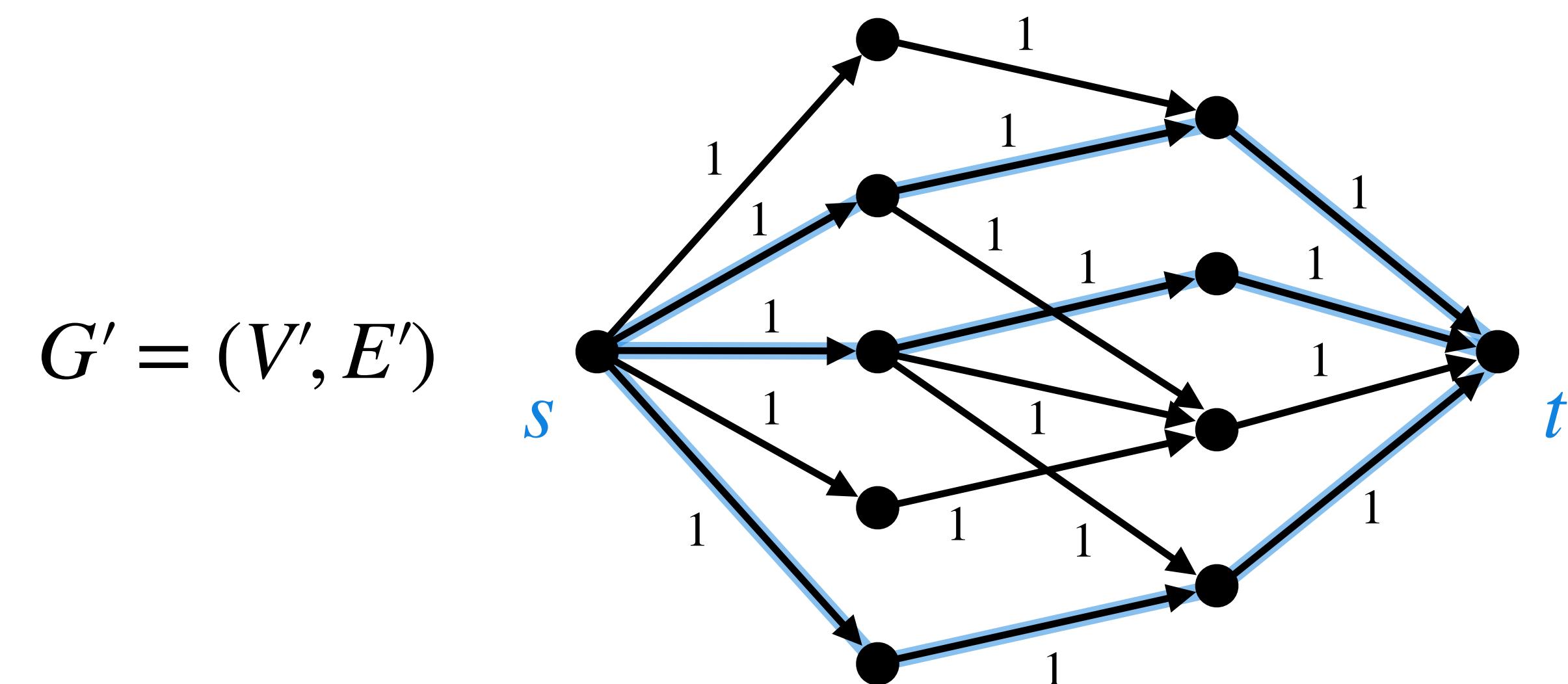
Claim: If M is a matching in G , then there is an integer-valued f in G' with value $|f| = |M|$.



Bipartite Matching to Flow

Claim: If M is a matching in G , then there is an integer-valued f in G' with value $|f| = |M|$.

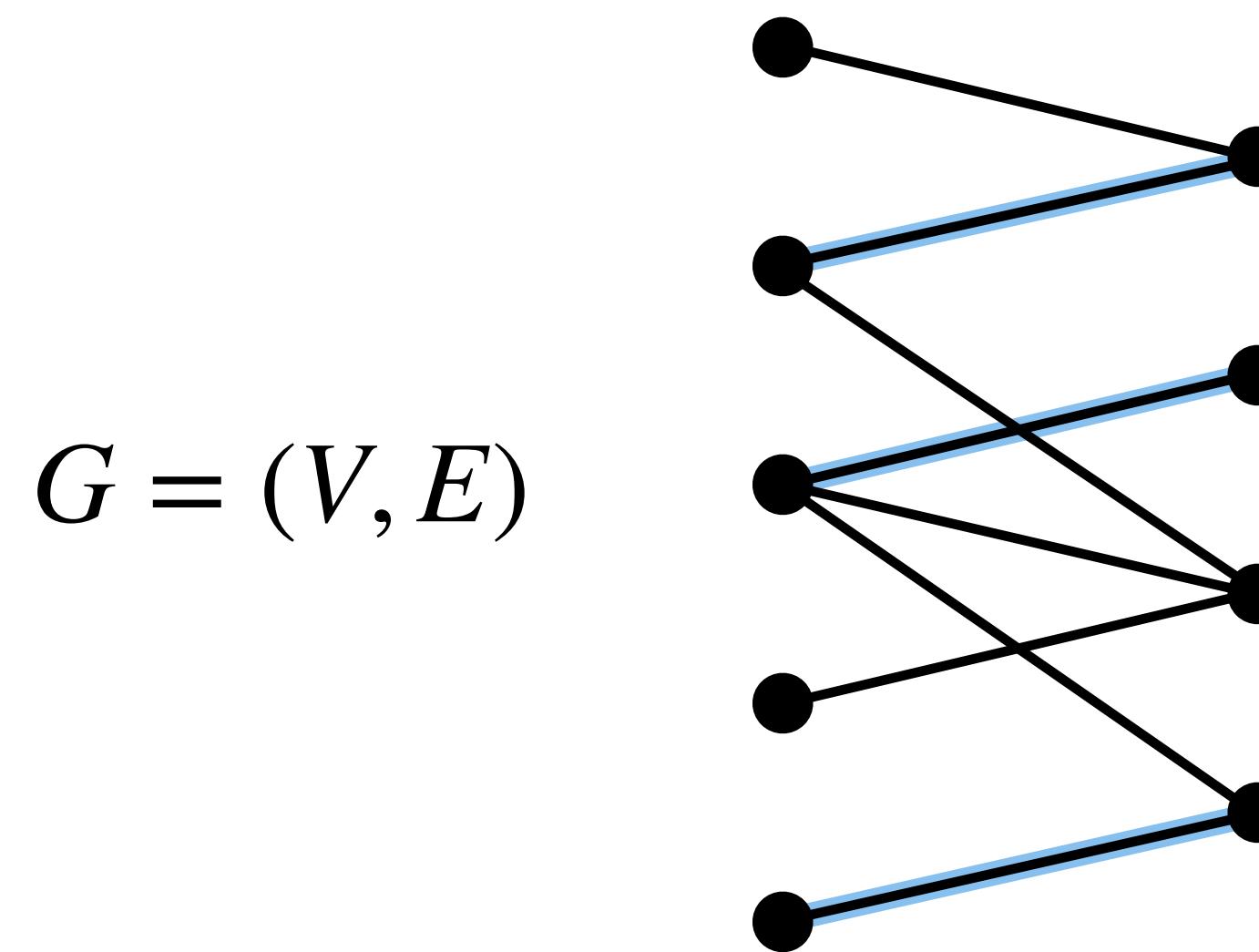
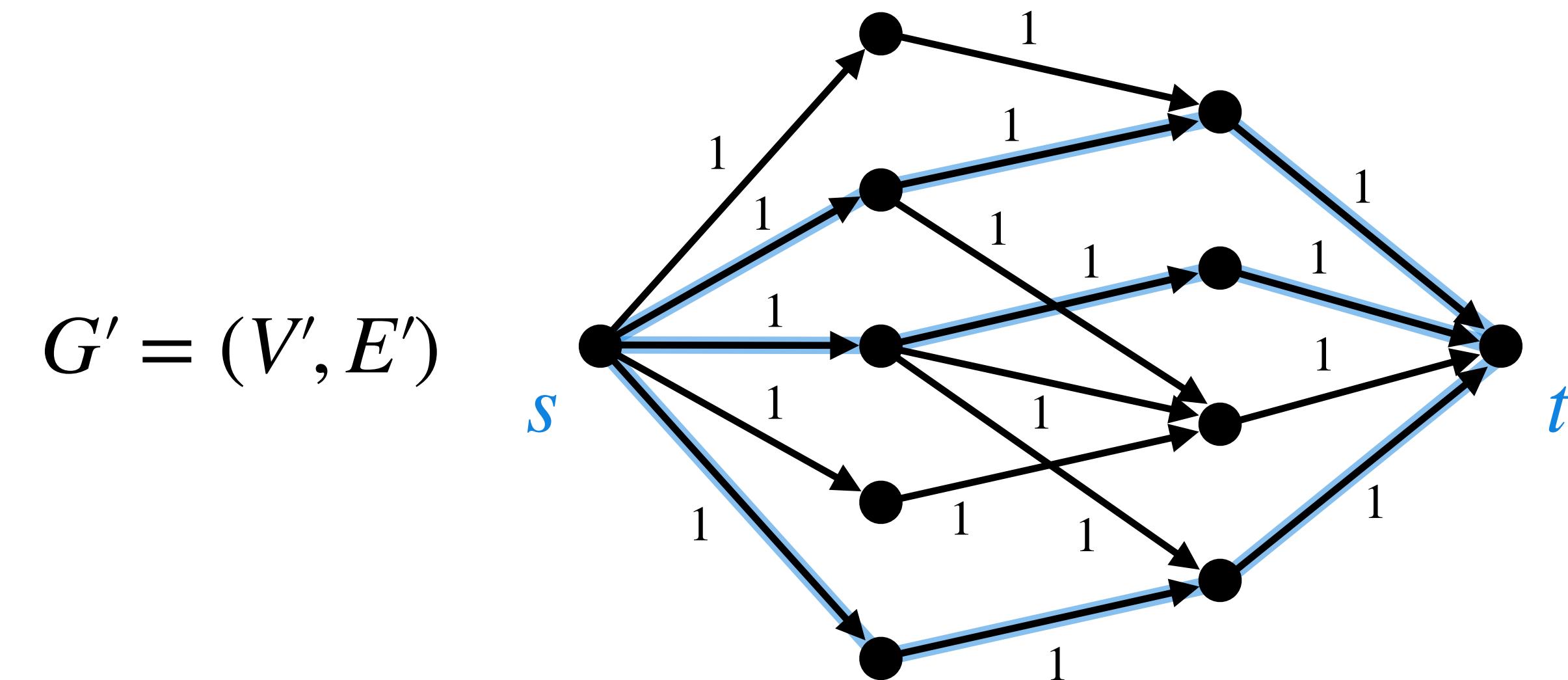
Proof:



Bipartite Matching to Flow

Claim: If M is a matching in G , then there is an integer-valued f in G' with value $|f| = |M|$.

Proof: Consider the following flow f such that $|f| = |M|$:

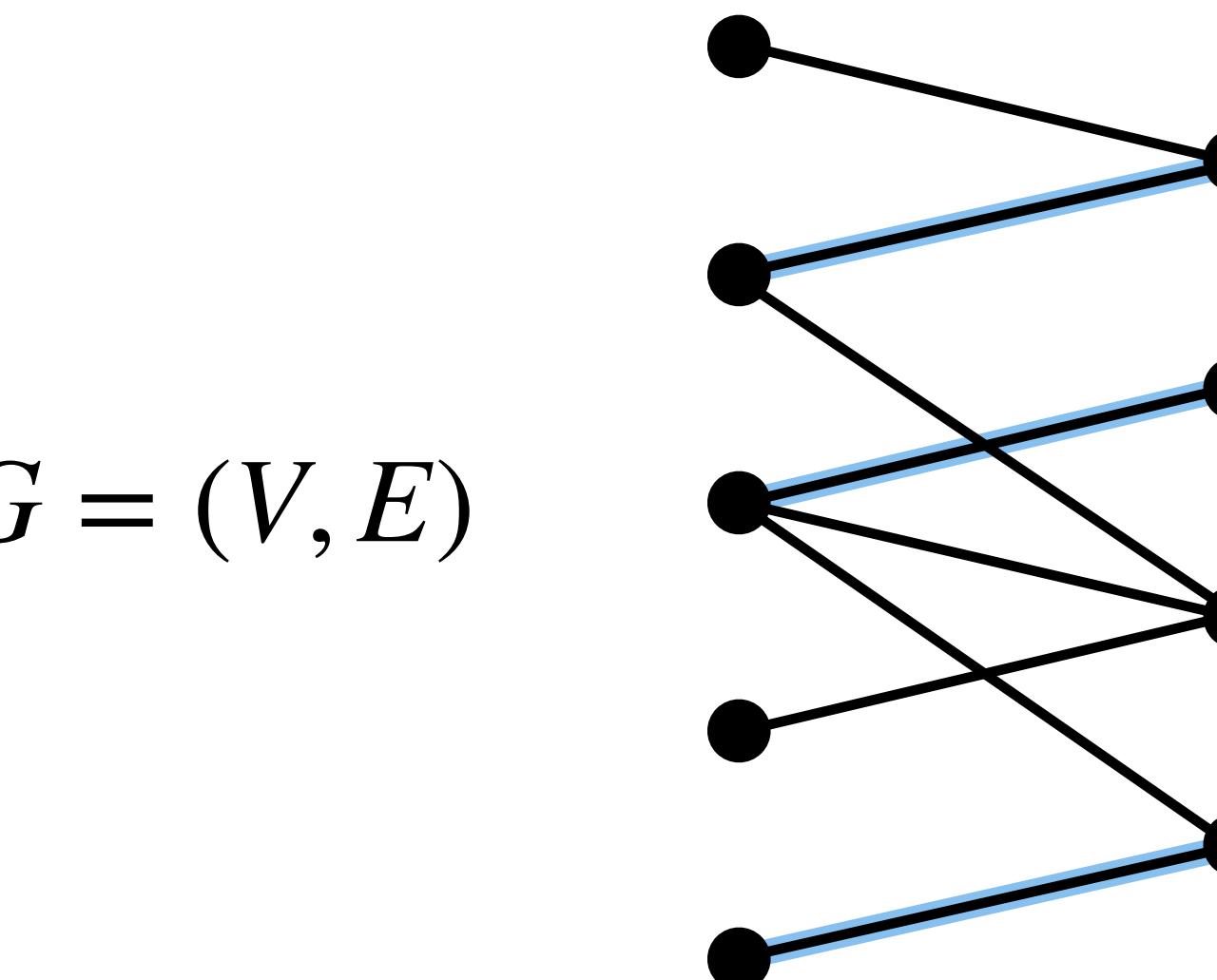


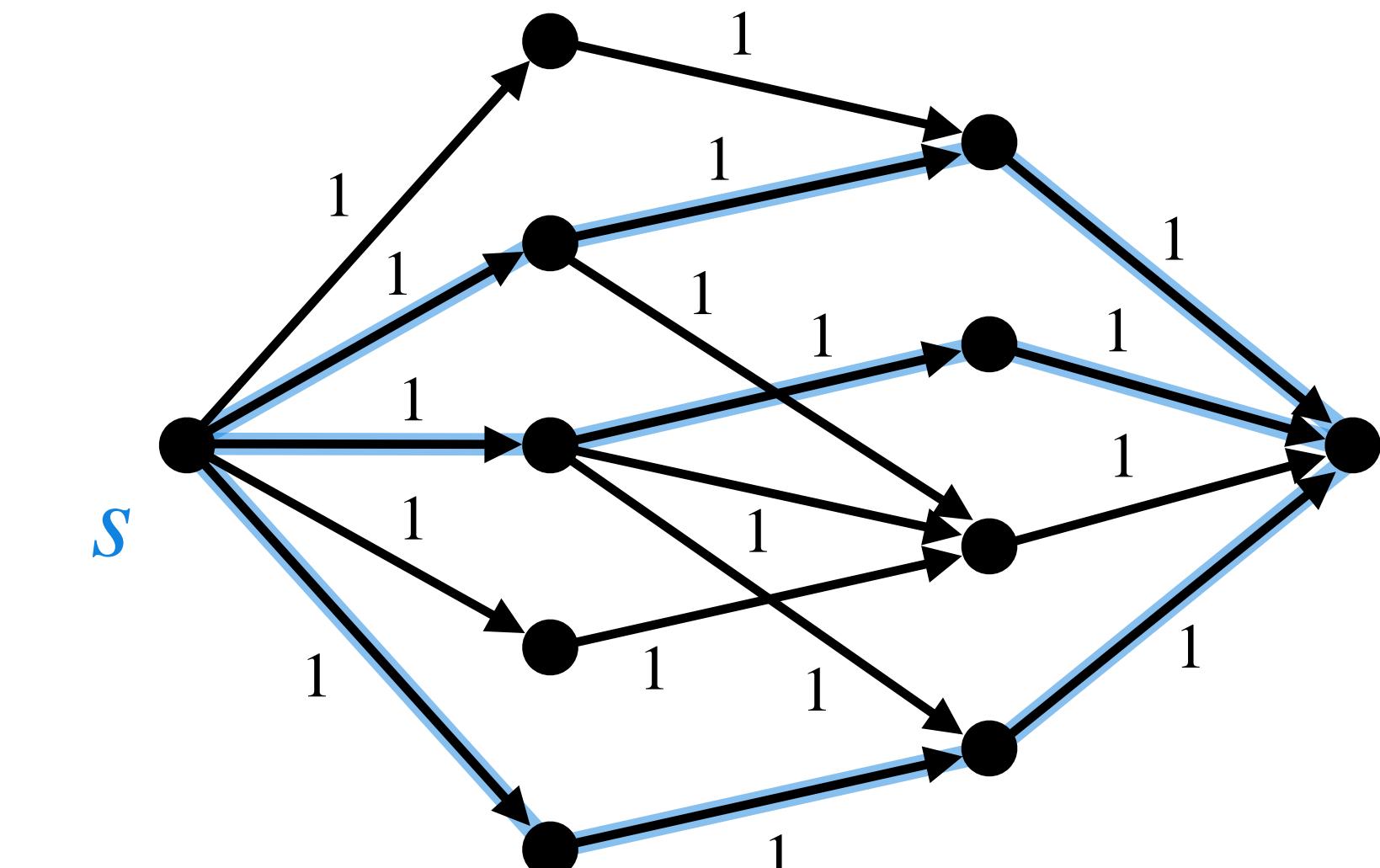
Bipartite Matching to Flow

Claim: If M is a matching in G , then there is an integer-valued f in G' with value $|f| = |M|$.

Proof: Consider the following flow f such that $|f| = |M|$:

- If $(u, v) \in M$, then $f(u, v) = f(s, u) = f(v, t) = 1$

$$G = (V, E)$$


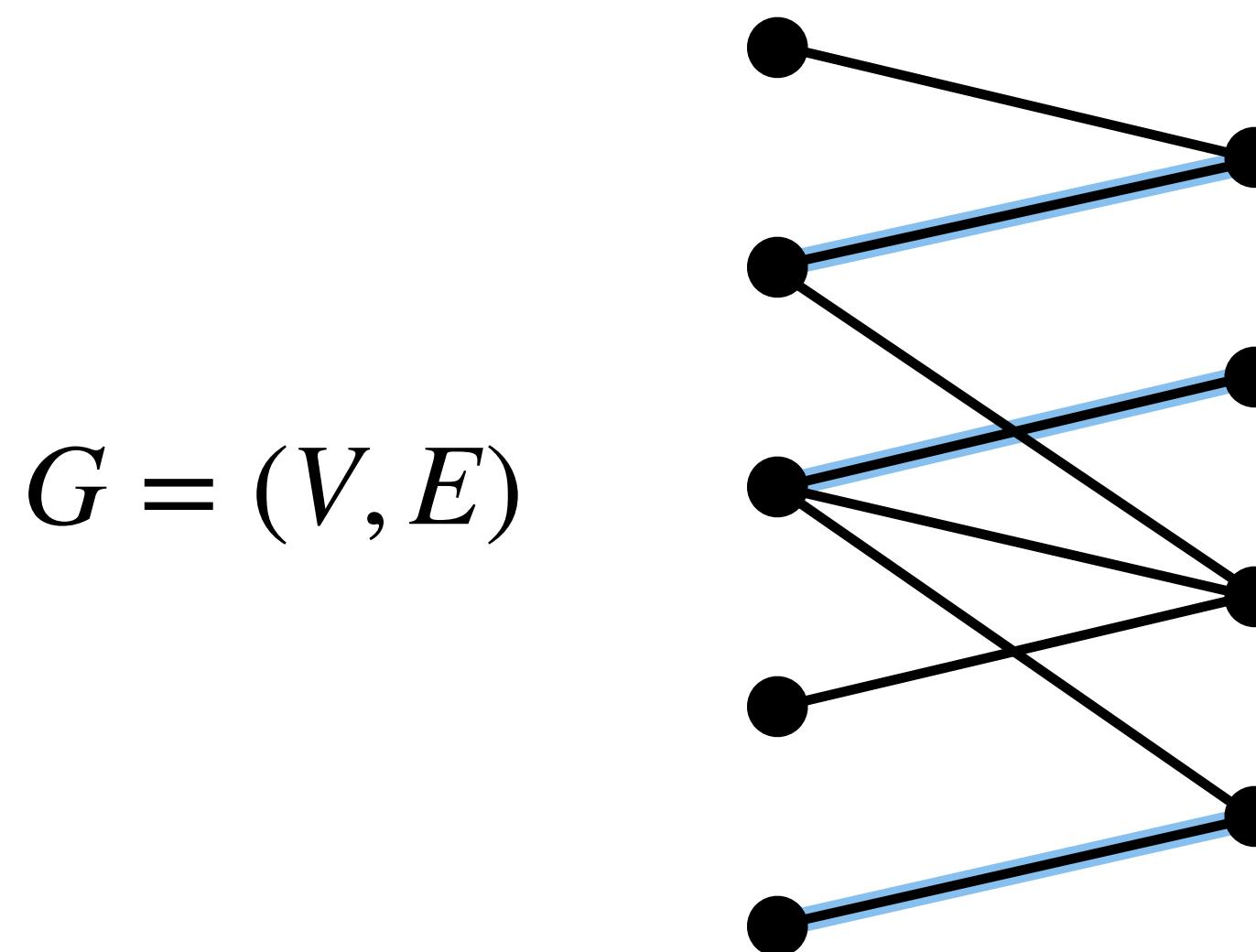
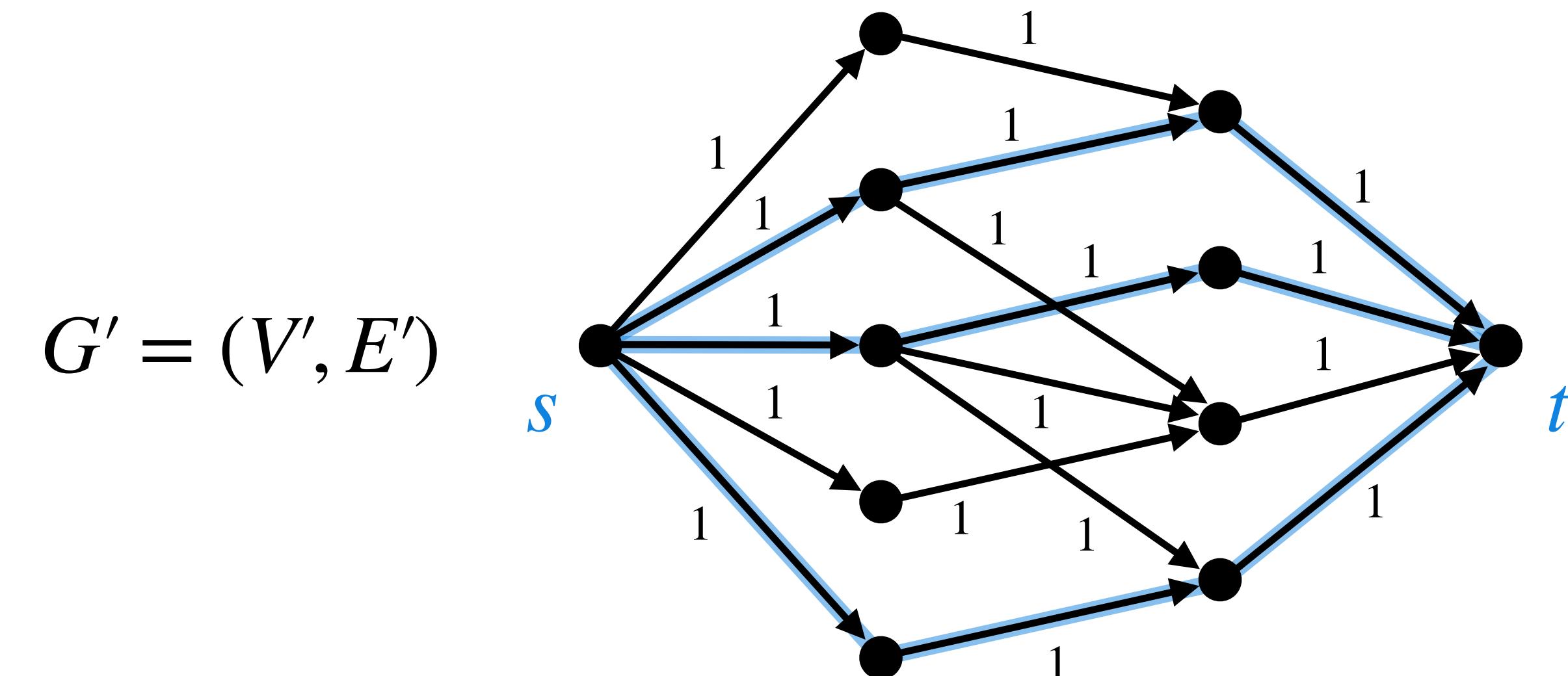
$$G' = (V', E')$$


Bipartite Matching to Flow

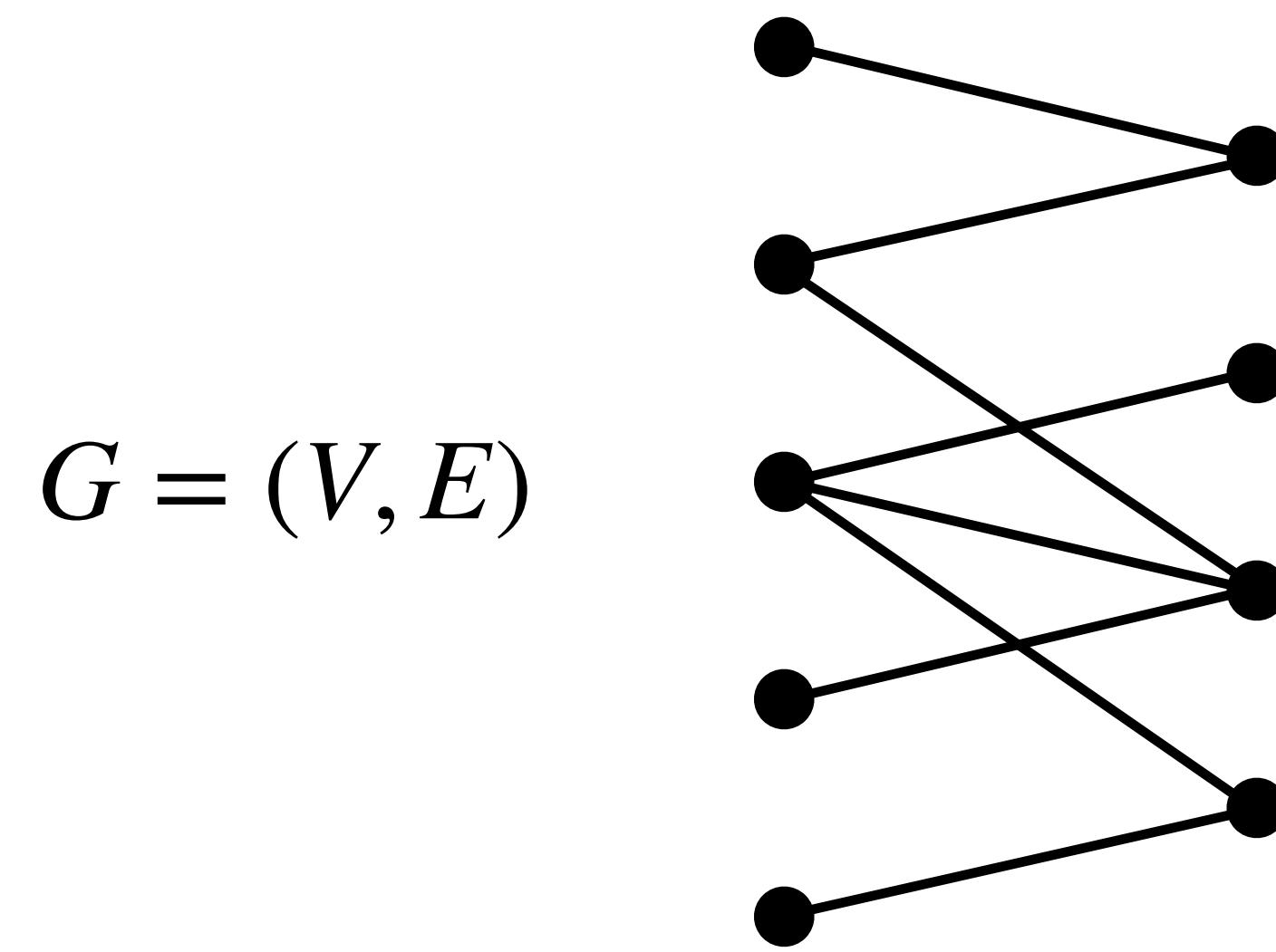
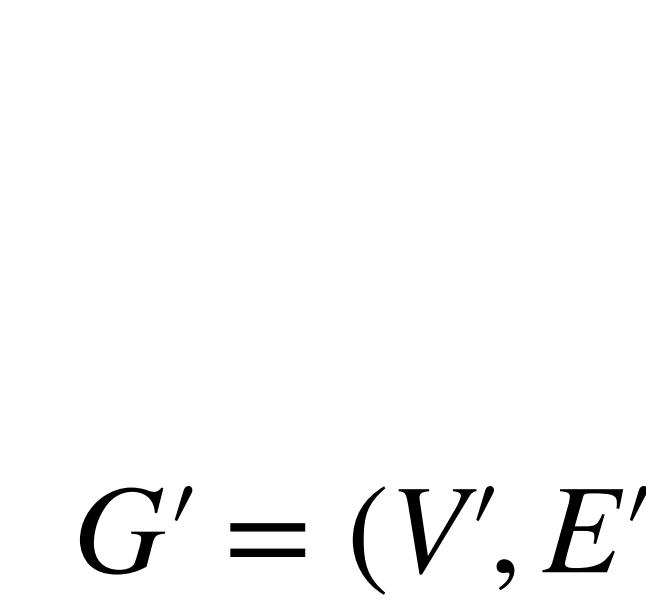
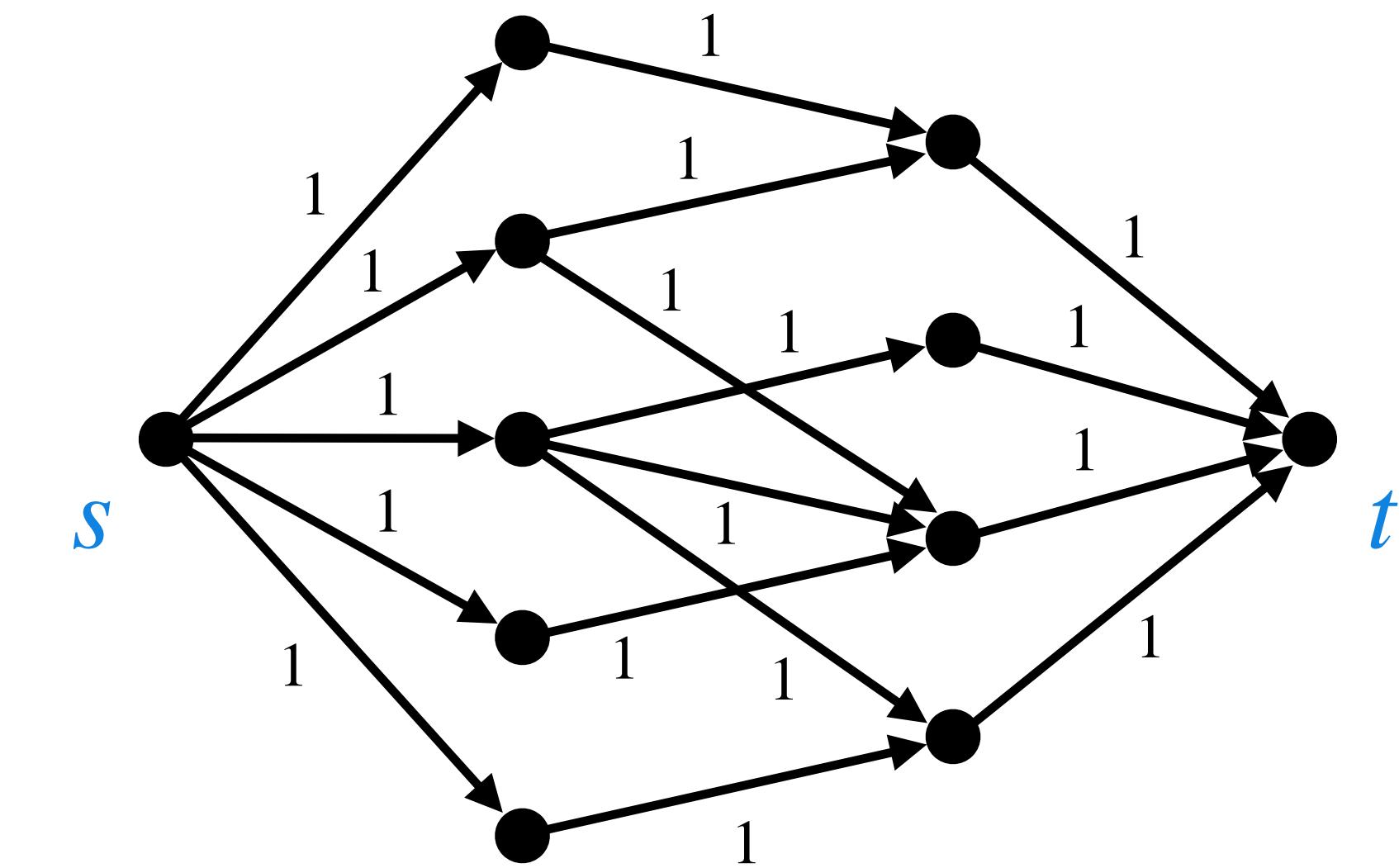
Claim: If M is a matching in G , then there is an integer-valued f in G' with value $|f| = |M|$.

Proof: Consider the following flow f such that $|f| = |M|$:

- If $(u, v) \in M$, then $f(u, v) = f(s, u) = f(v, t) = 1$
- For other (u, v) edges in E' , $f(u, v) = 0$.

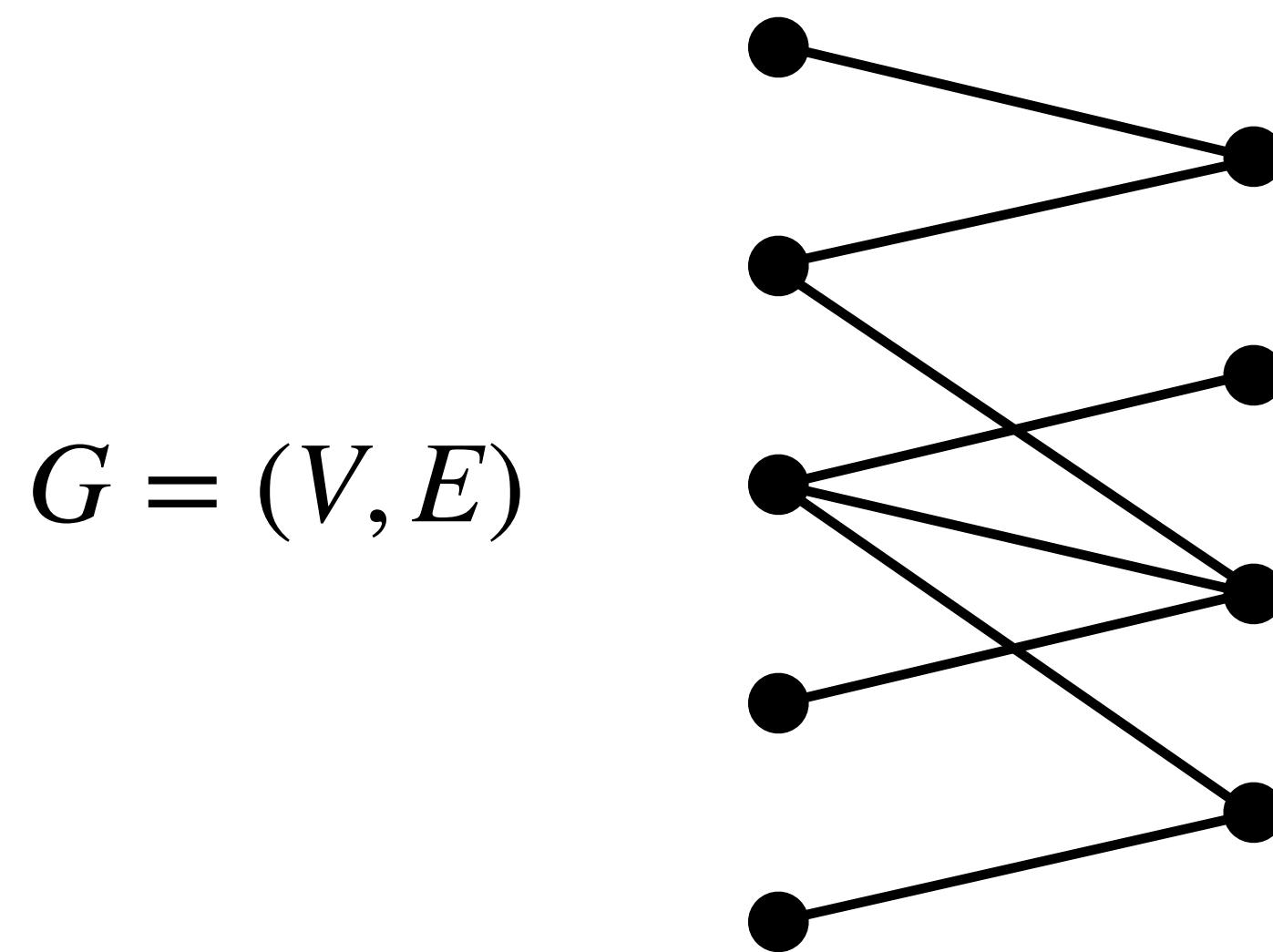
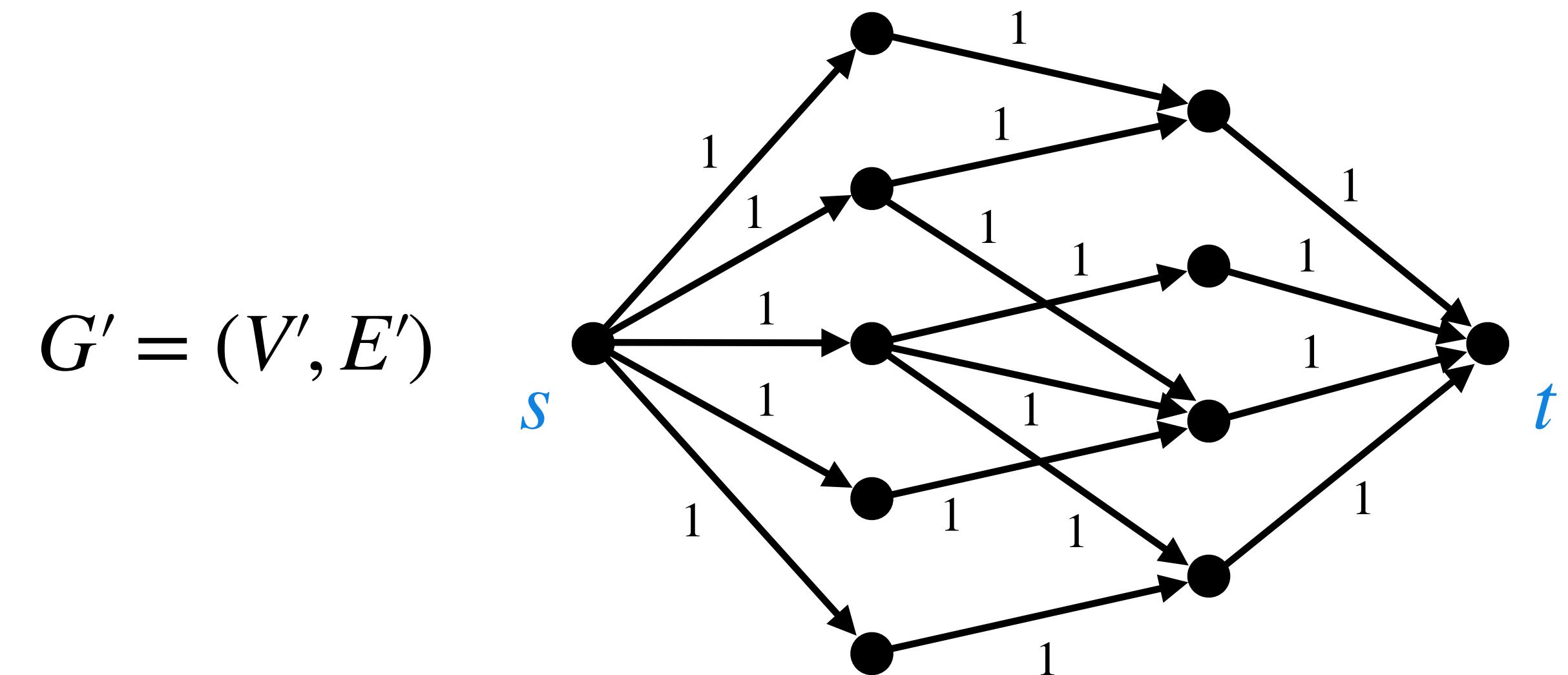


Bipartite Matching to Flow



Bipartite Matching to Flow

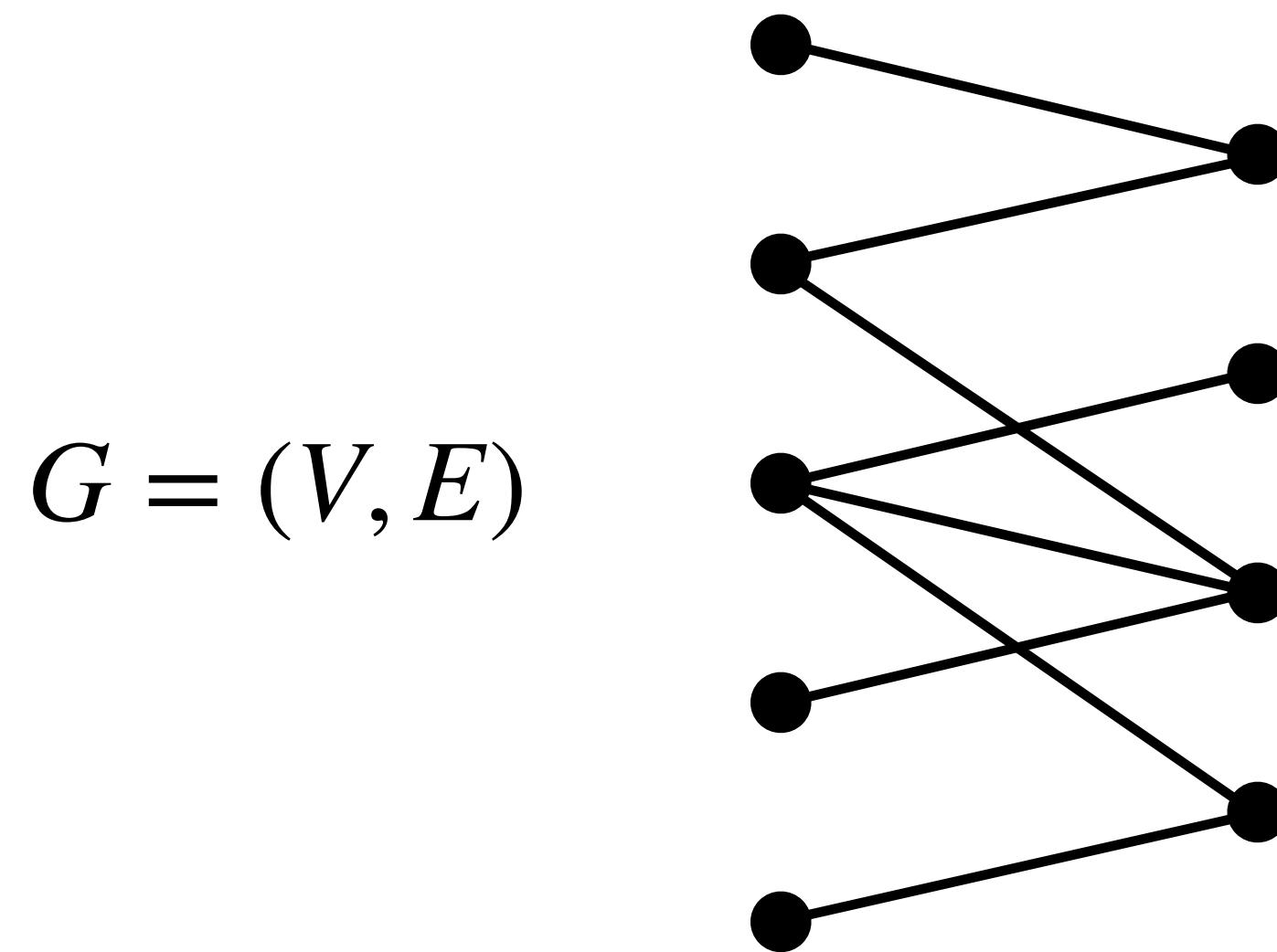
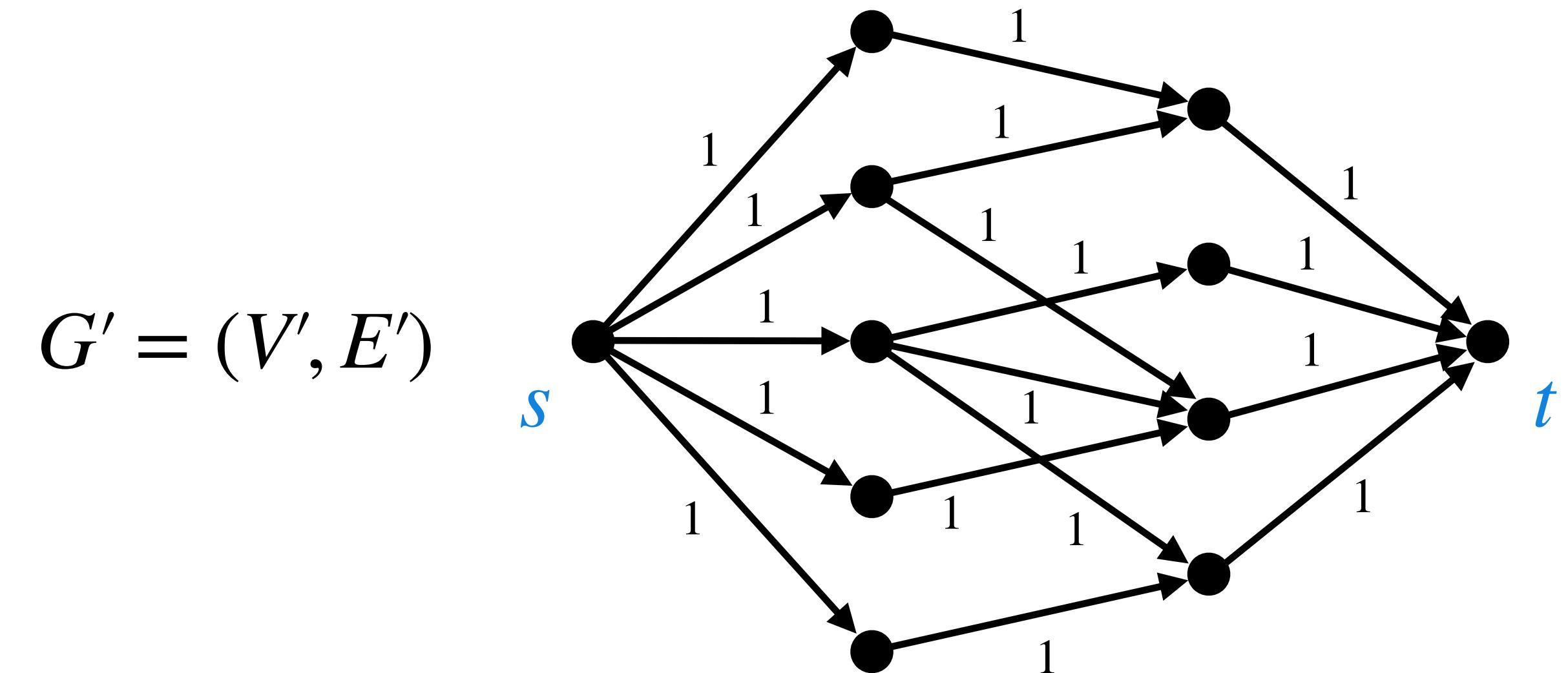
Claim: If f is an integer-valued flow in G' , then \exists a matching M of size $|f|$ in G .



Bipartite Matching to Flow

Claim: If f is an integer-valued flow in G' , then \exists a matching M of size $|f|$ in G .

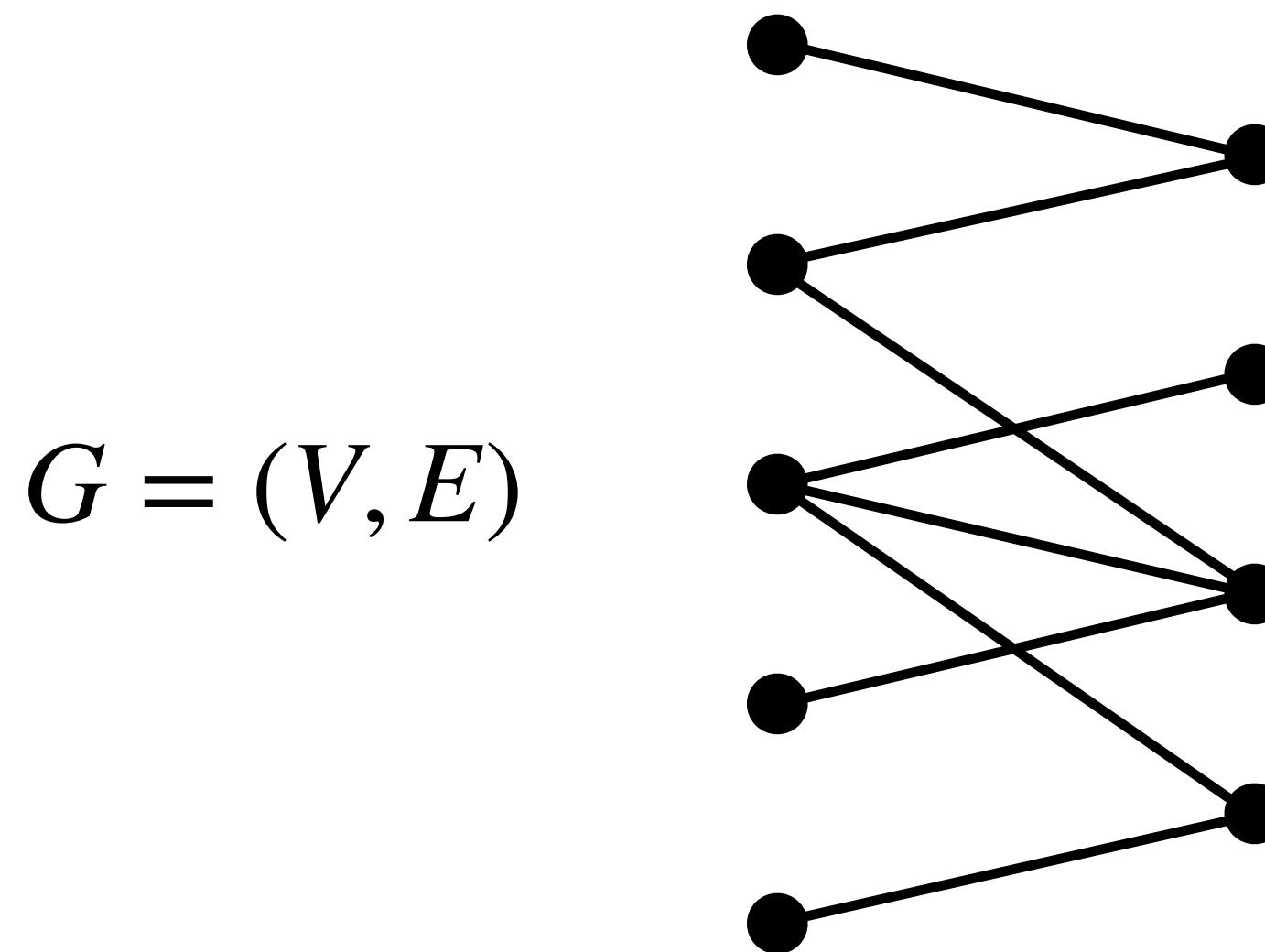
Proof:



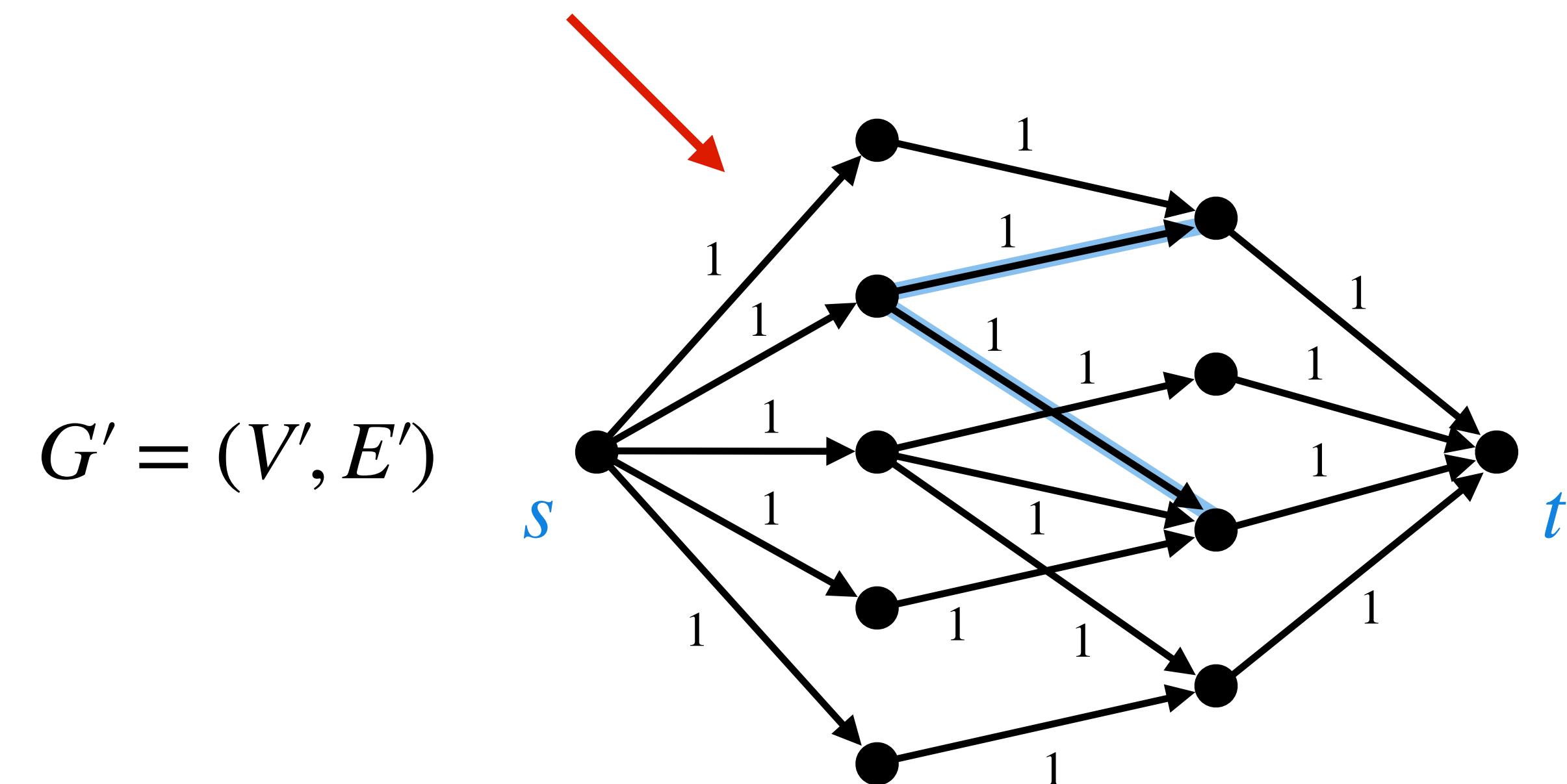
Bipartite Matching to Flow

Claim: If f is an integer-valued flow in G' , then \exists a matching M of size $|f|$ in G .

Proof:



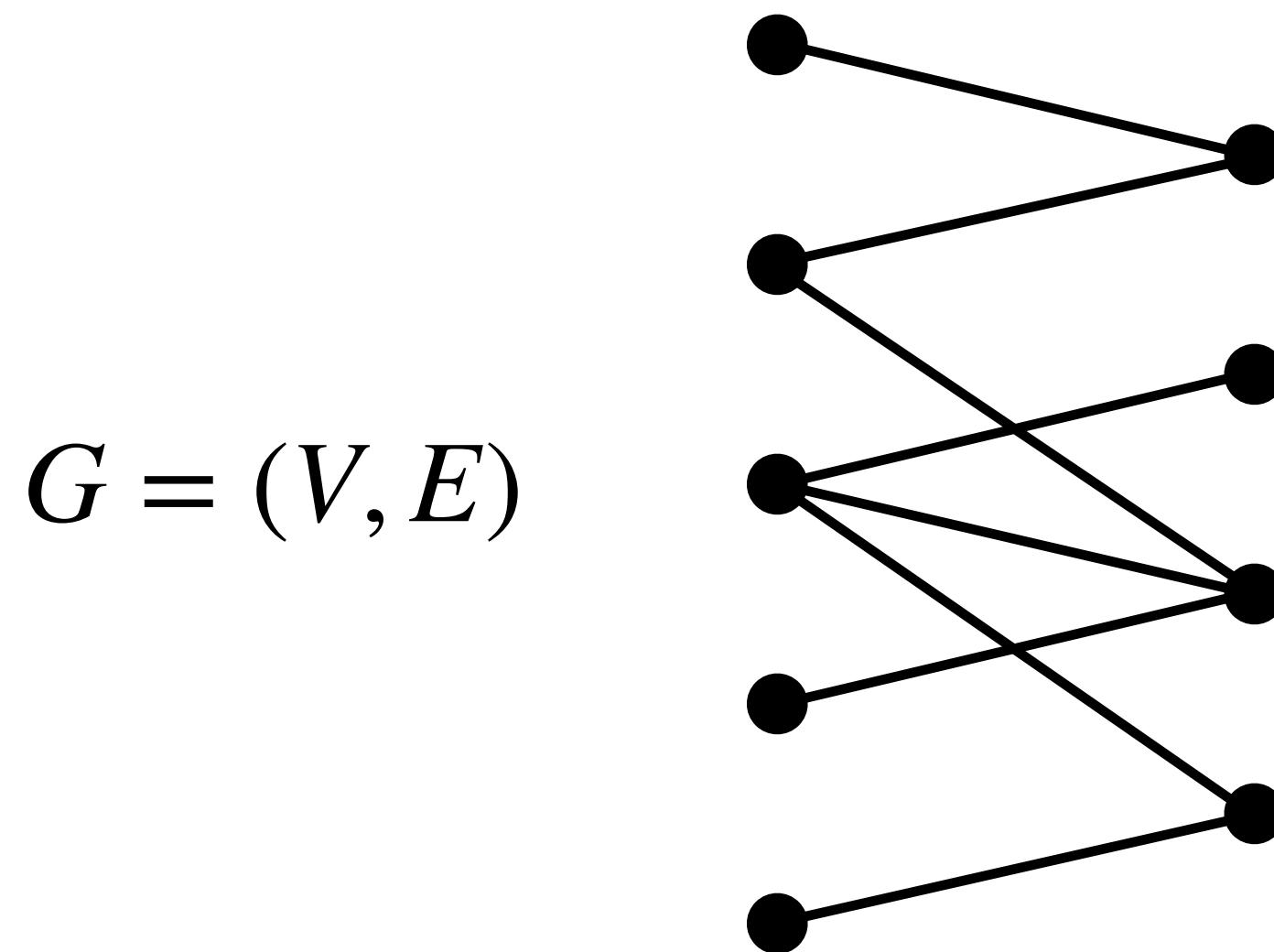
Can two edges with flow one
from L to R have a common vertex?



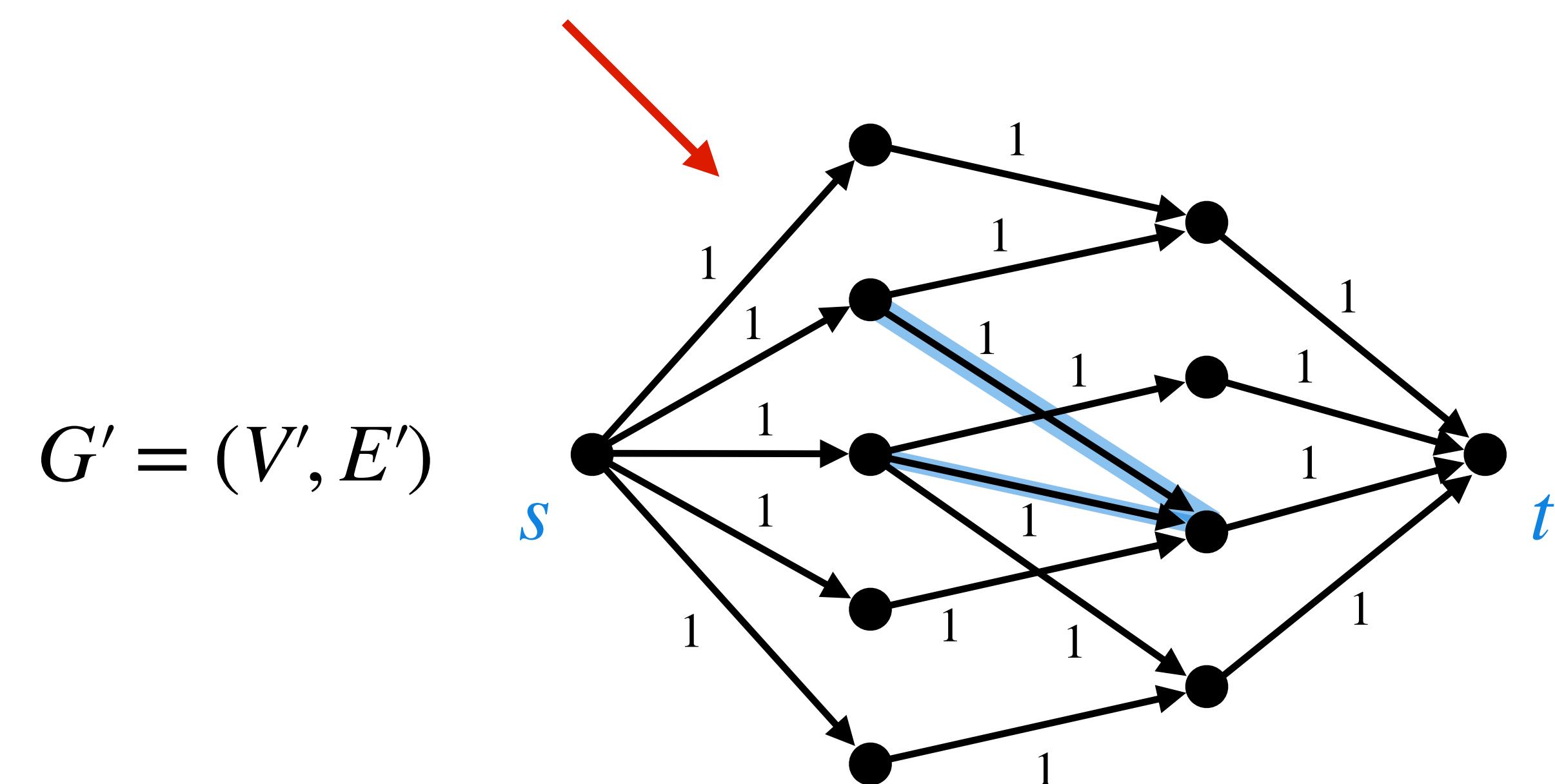
Bipartite Matching to Flow

Claim: If f is an integer-valued flow in G' , then \exists a matching M of size $|f|$ in G .

Proof:



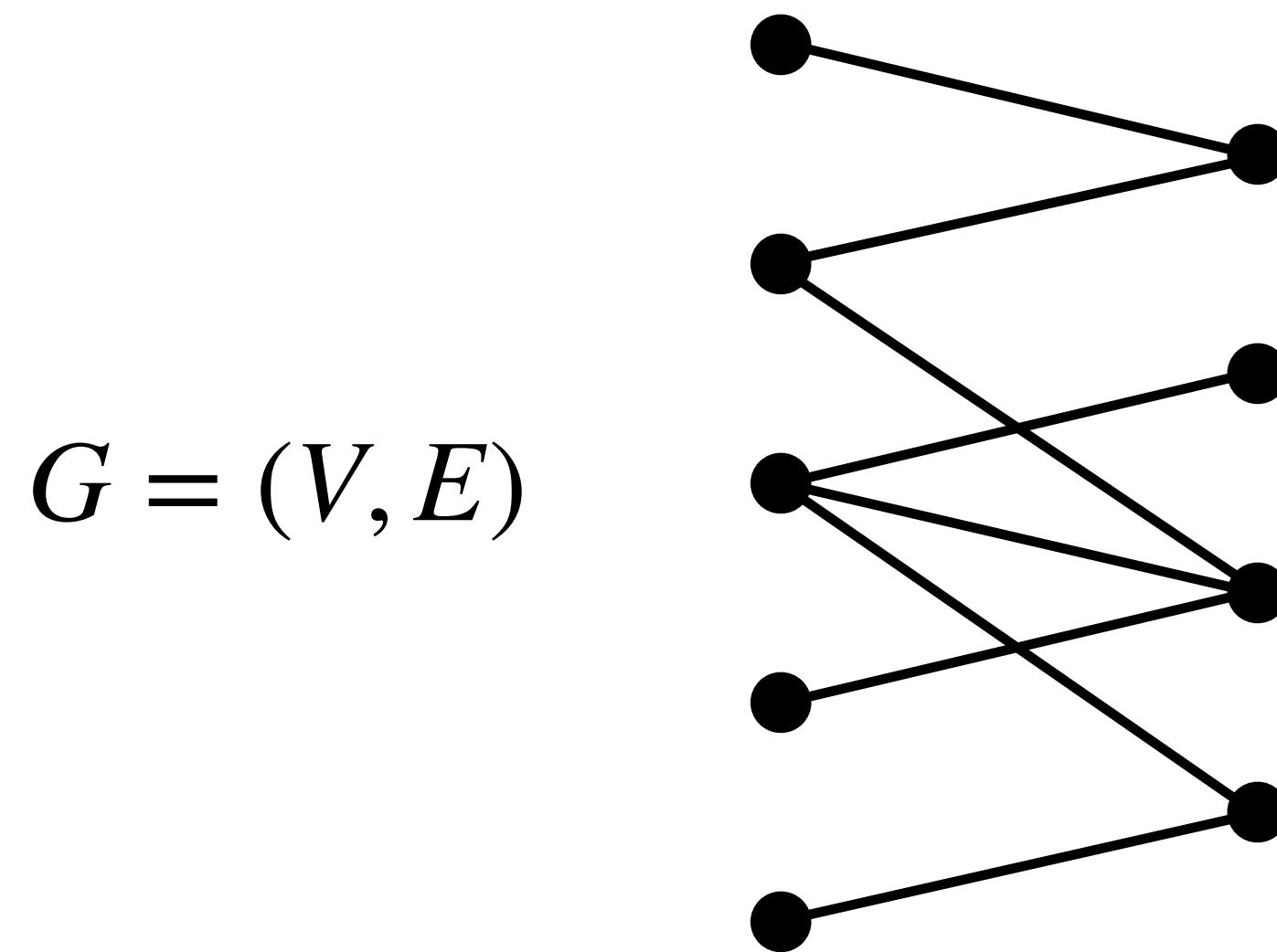
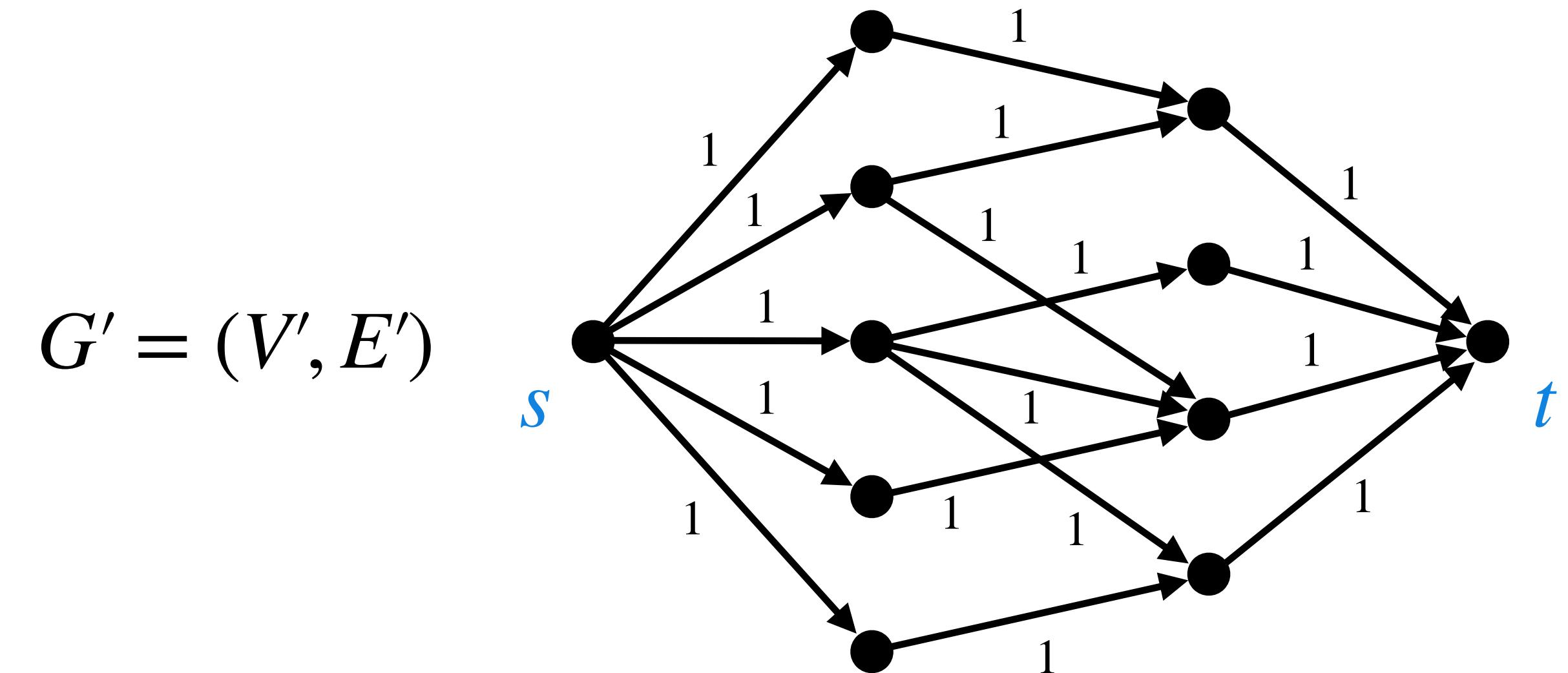
Can two edges with flow one
from L to R have a common vertex?



Bipartite Matching to Flow

Claim: If f is an integer-valued flow in G' , then \exists a matching M of size $|f|$ in G .

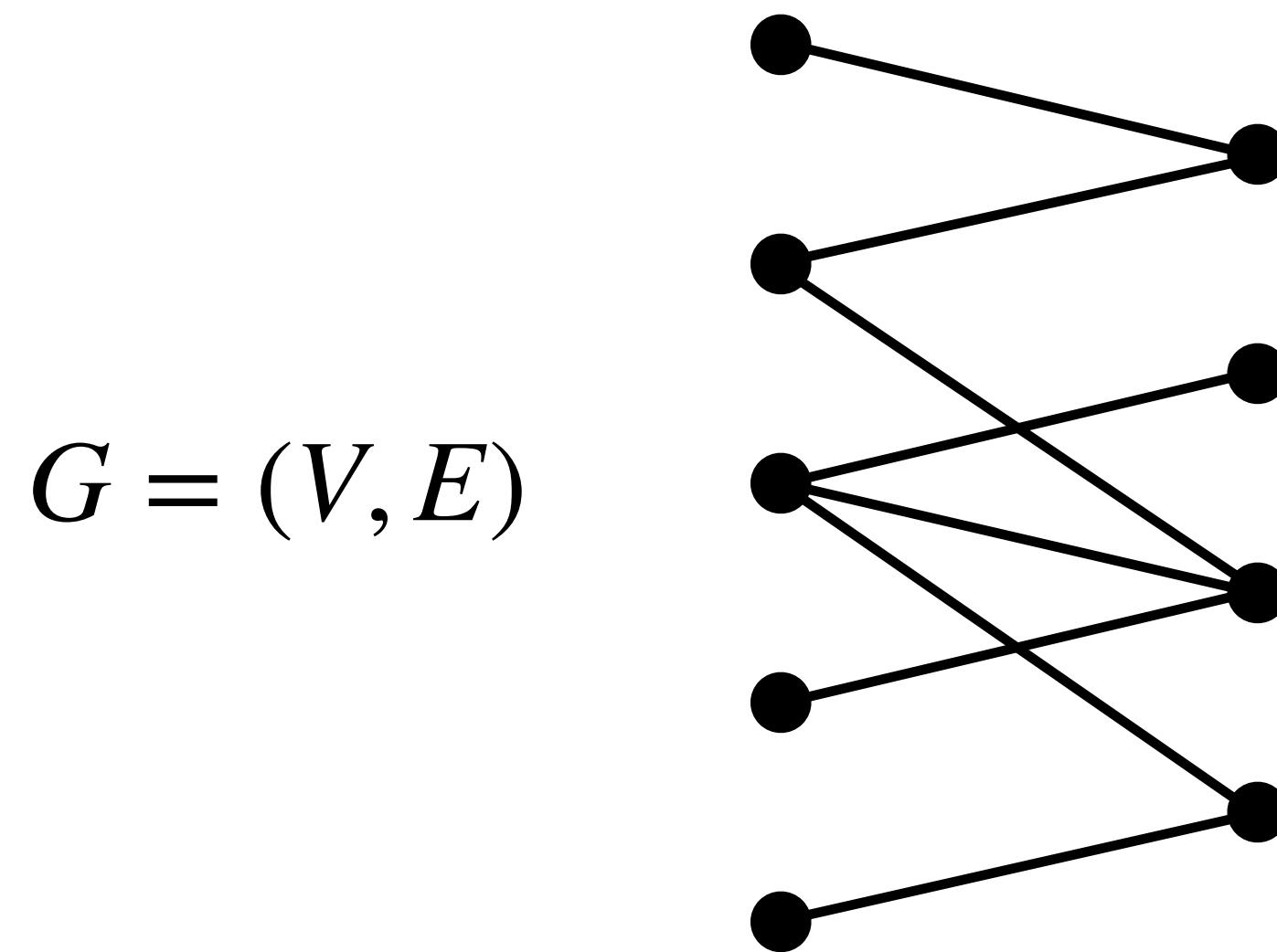
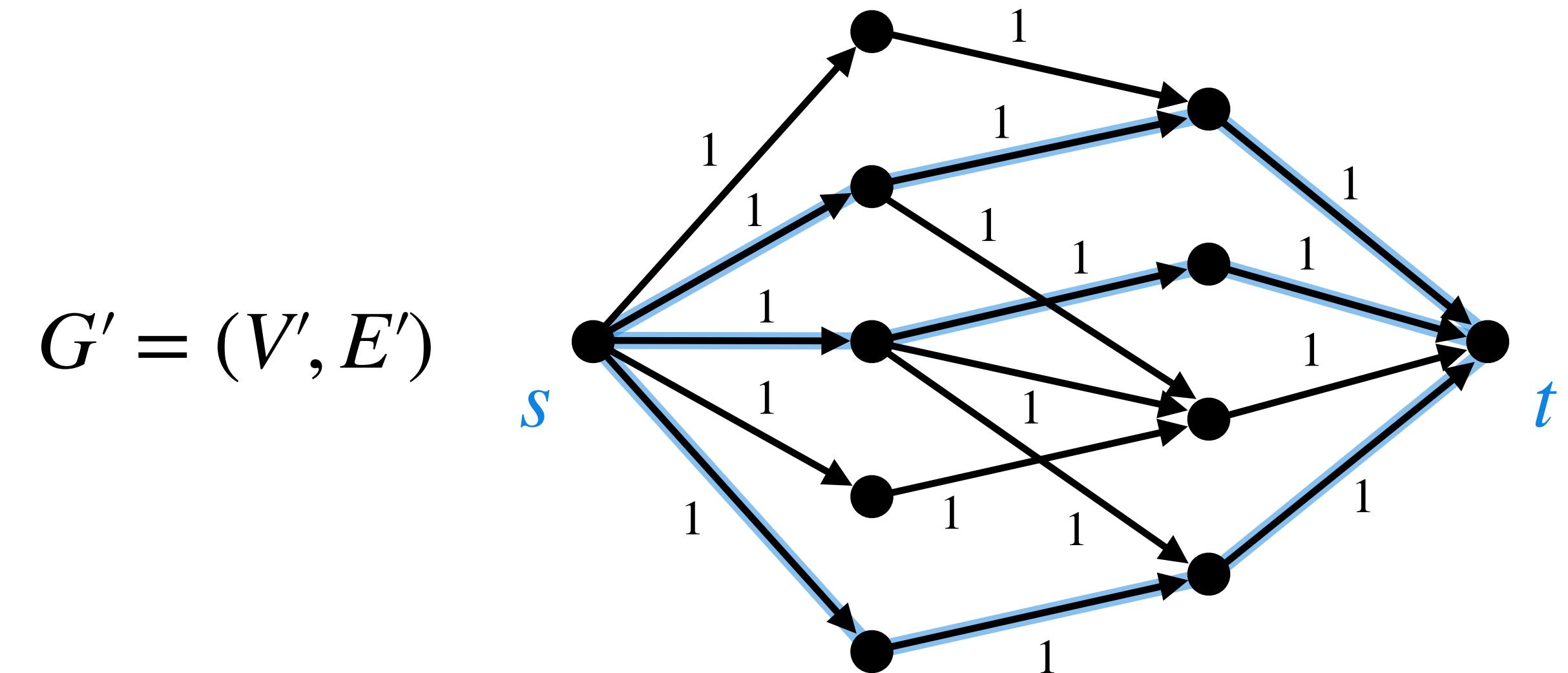
Proof:



Bipartite Matching to Flow

Claim: If f is an integer-valued flow in G' , then \exists a matching M of size $|f|$ in G .

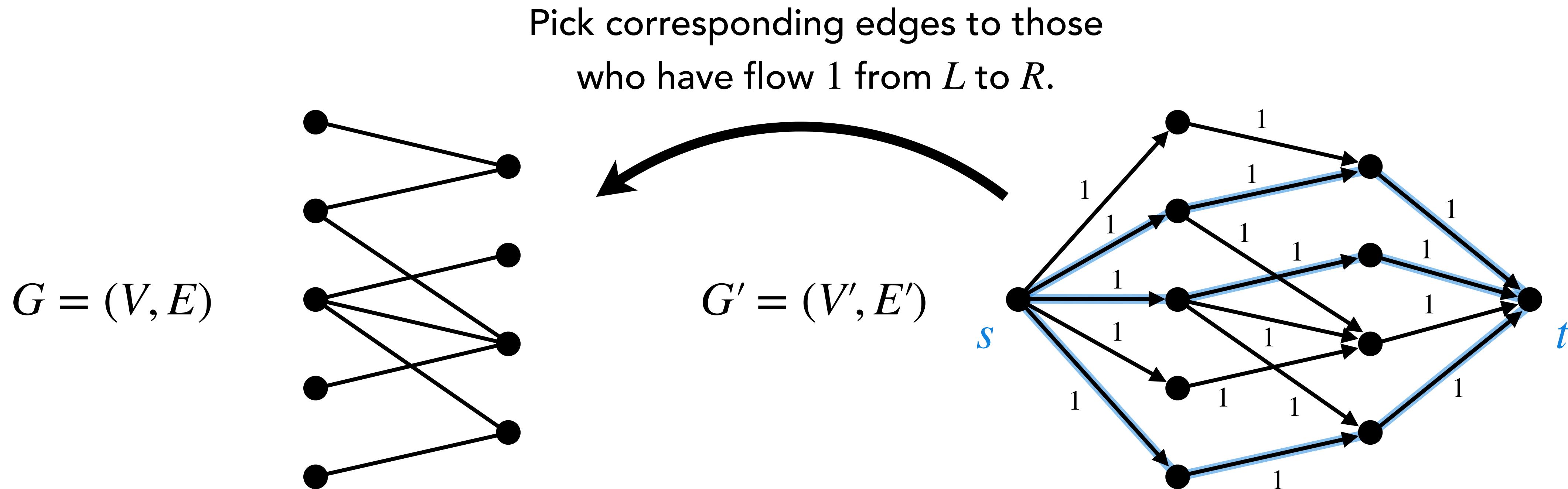
Proof:



Bipartite Matching to Flow

Claim: If f is an integer-valued flow in G' , then \exists a matching M of size $|f|$ in G .

Proof:

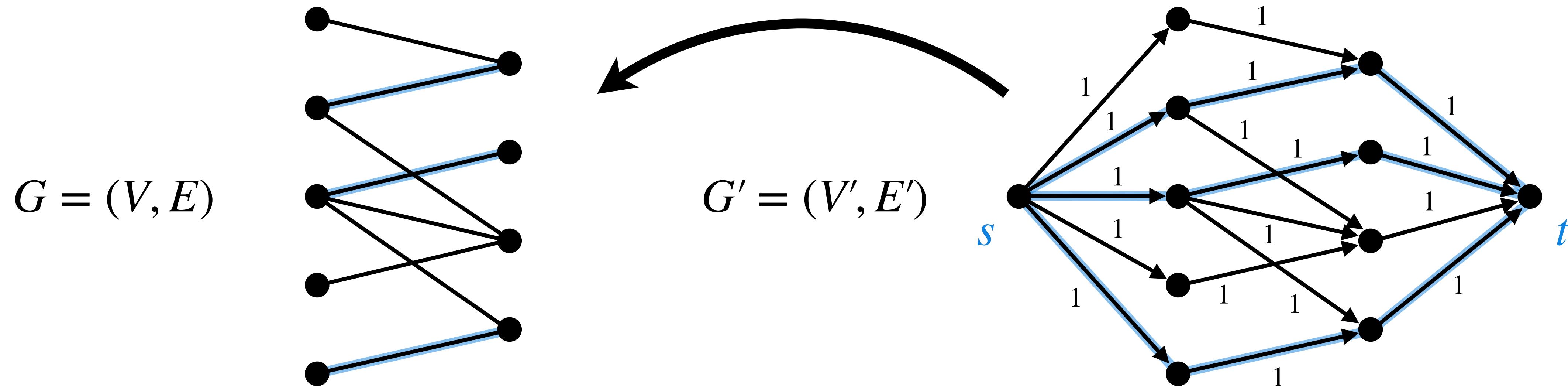


Bipartite Matching to Flow

Claim: If f is an integer-valued flow in G' , then \exists a matching M of size $|f|$ in G .

Proof:

Pick corresponding edges to those
who have flow 1 from L to R .



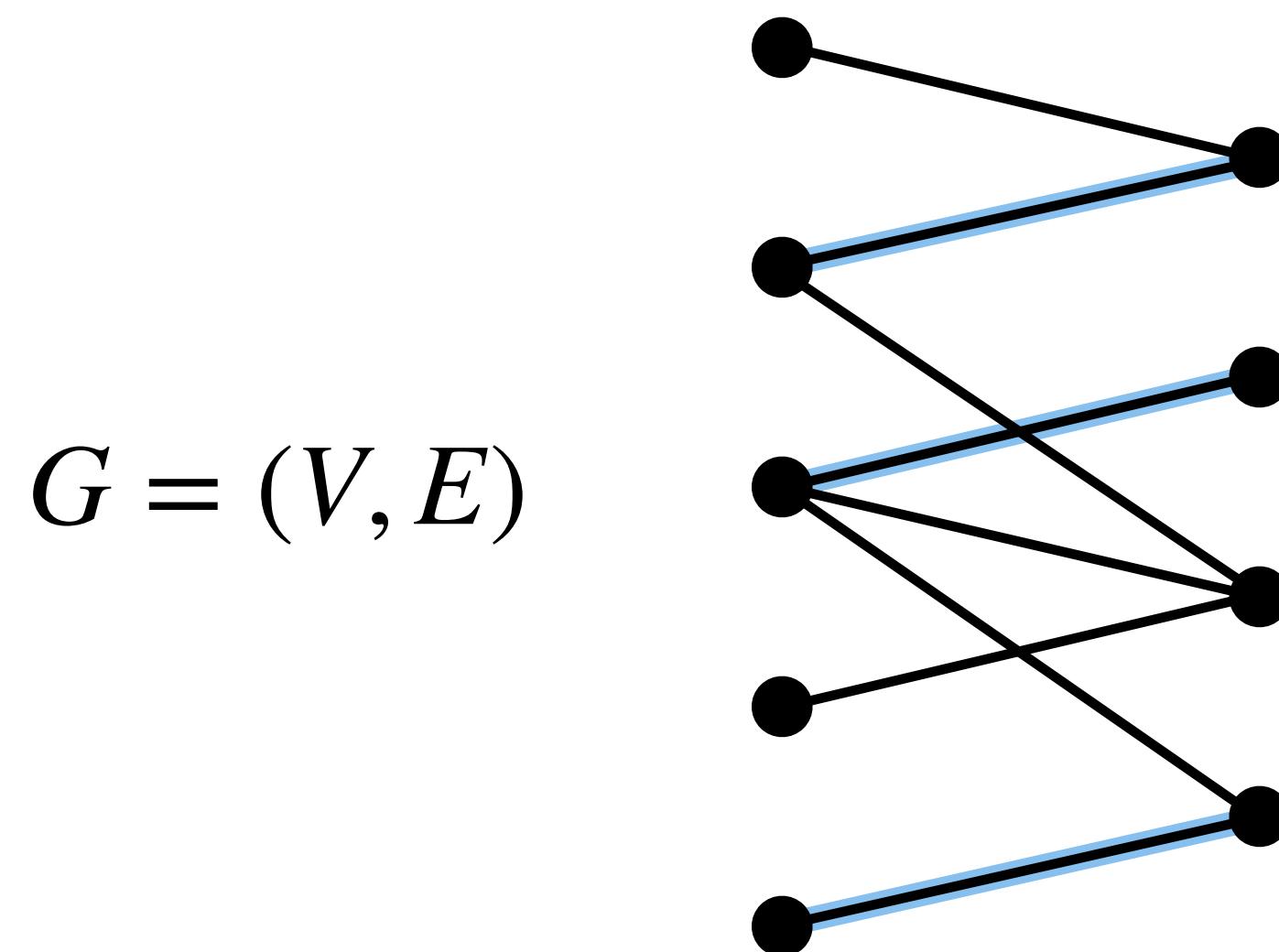
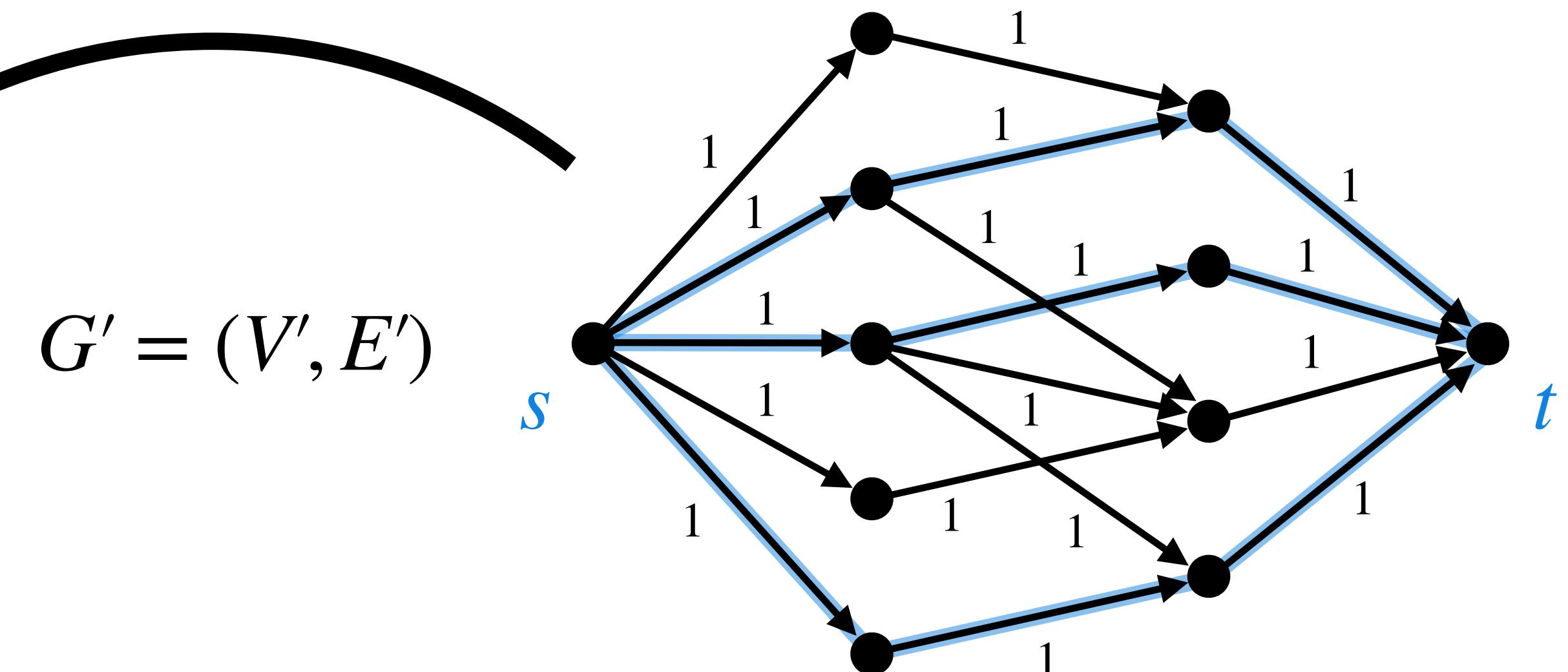
Bipartite Matching to Flow

Claim: If f is an integer-valued flow in G' , then \exists a matching M of size $|f|$ in G .

Proof:

$|M|$

Pick corresponding edges to those
who have flow 1 from L to R .



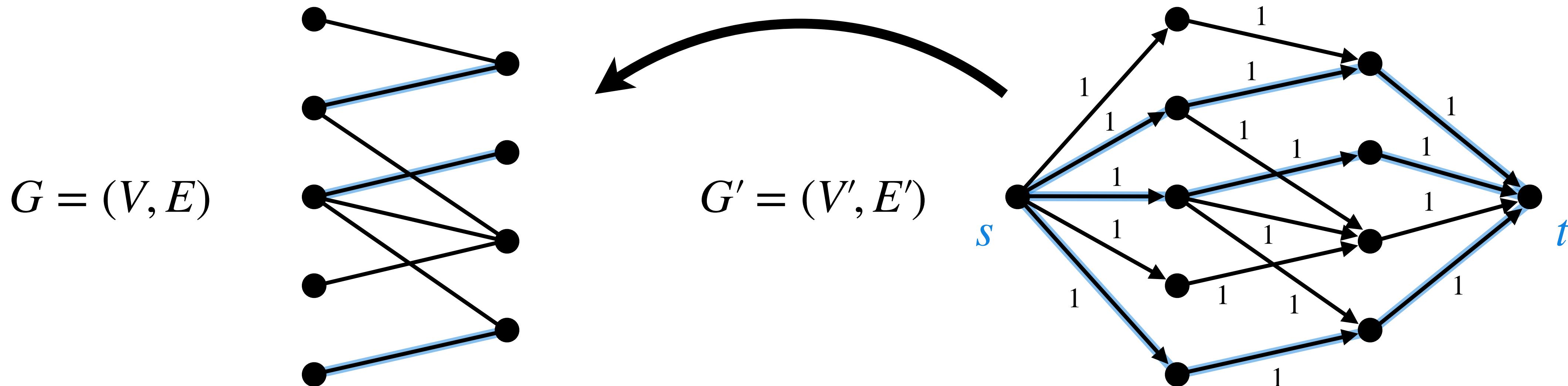
Bipartite Matching to Flow

Claim: If f is an integer-valued flow in G' , then \exists a matching M of size $|f|$ in G .

Proof:

$$|M| = \# \text{ of edges from } L \text{ to } R \text{ with flow 1}$$

Pick corresponding edges to those
who have flow 1 from L to R .



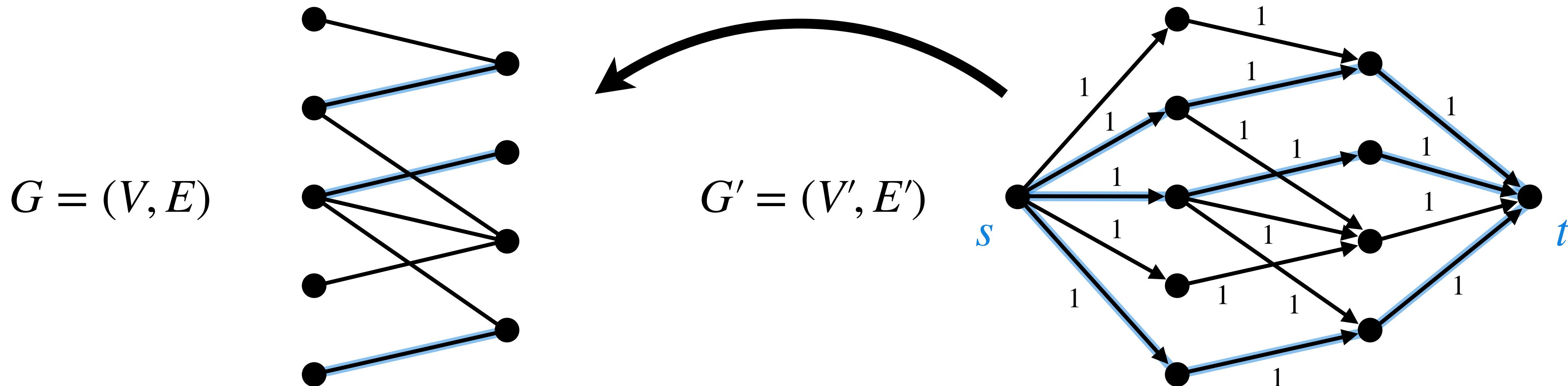
Bipartite Matching to Flow

Claim: If f is an integer-valued flow in G' , then \exists a matching M of size $|f|$ in G .

Proof:

$$|M| = \# \text{ of edges from } L \text{ to } R \text{ with flow 1} = \text{net flow across cut } (s \cup L, R \cup t)$$

Pick corresponding edges to those
who have flow 1 from L to R .



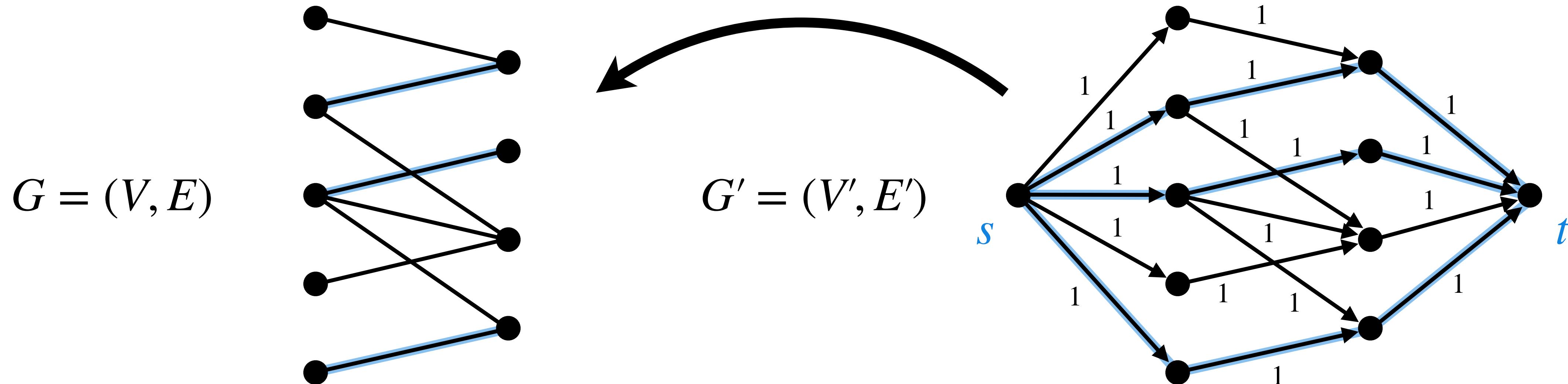
Bipartite Matching to Flow

Claim: If f is an integer-valued flow in G' , then \exists a matching M of size $|f|$ in G .

Proof:

$$|M| = \# \text{ of edges from } L \text{ to } R \text{ with flow 1} = \text{net flow across cut } (s \cup L, R \cup t) = |f|$$

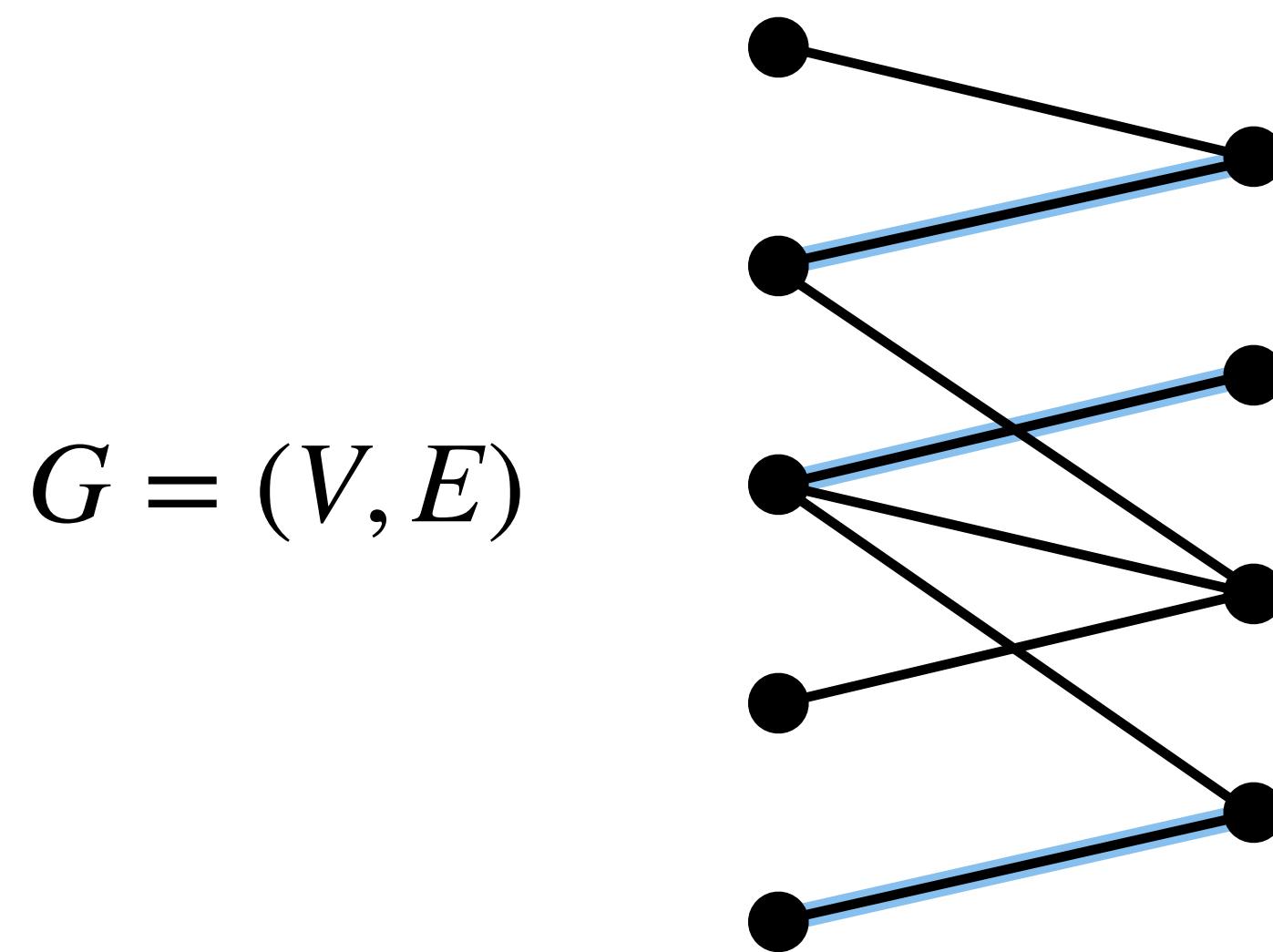
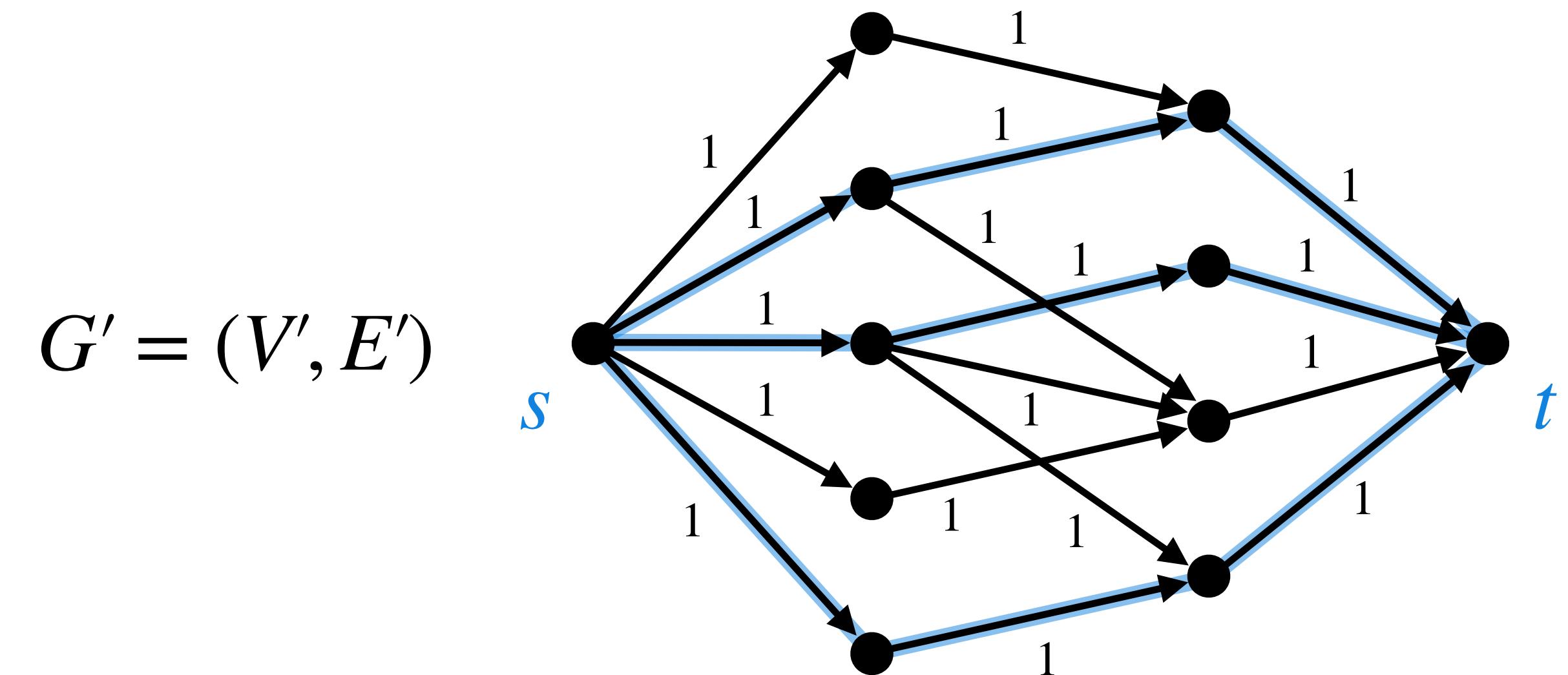
Pick corresponding edges to those
who have flow 1 from L to R .



Bipartite Matching to Flow

Claim: If f is an integer-valued flow in G' , then \exists a matching M of size $|f|$ in G .

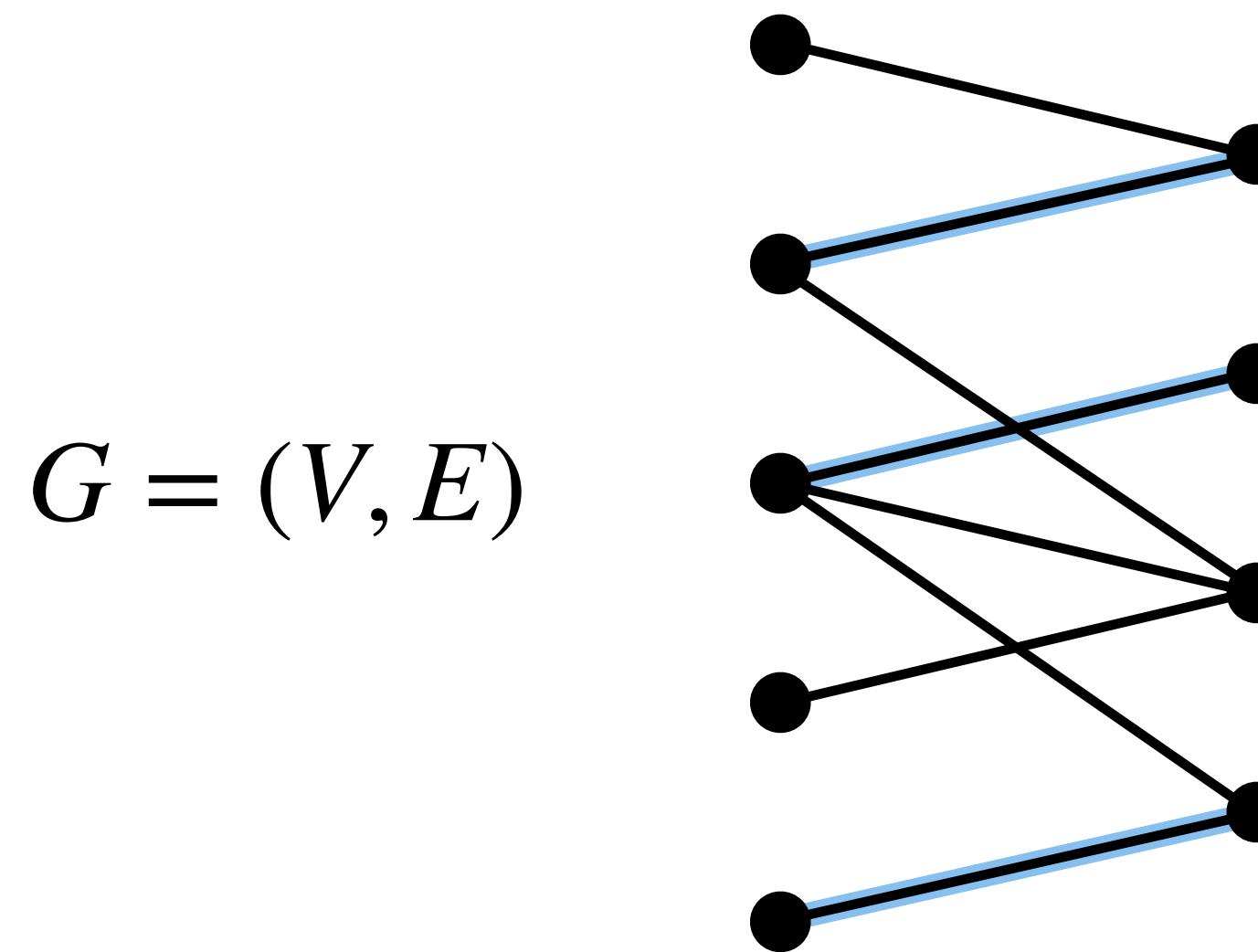
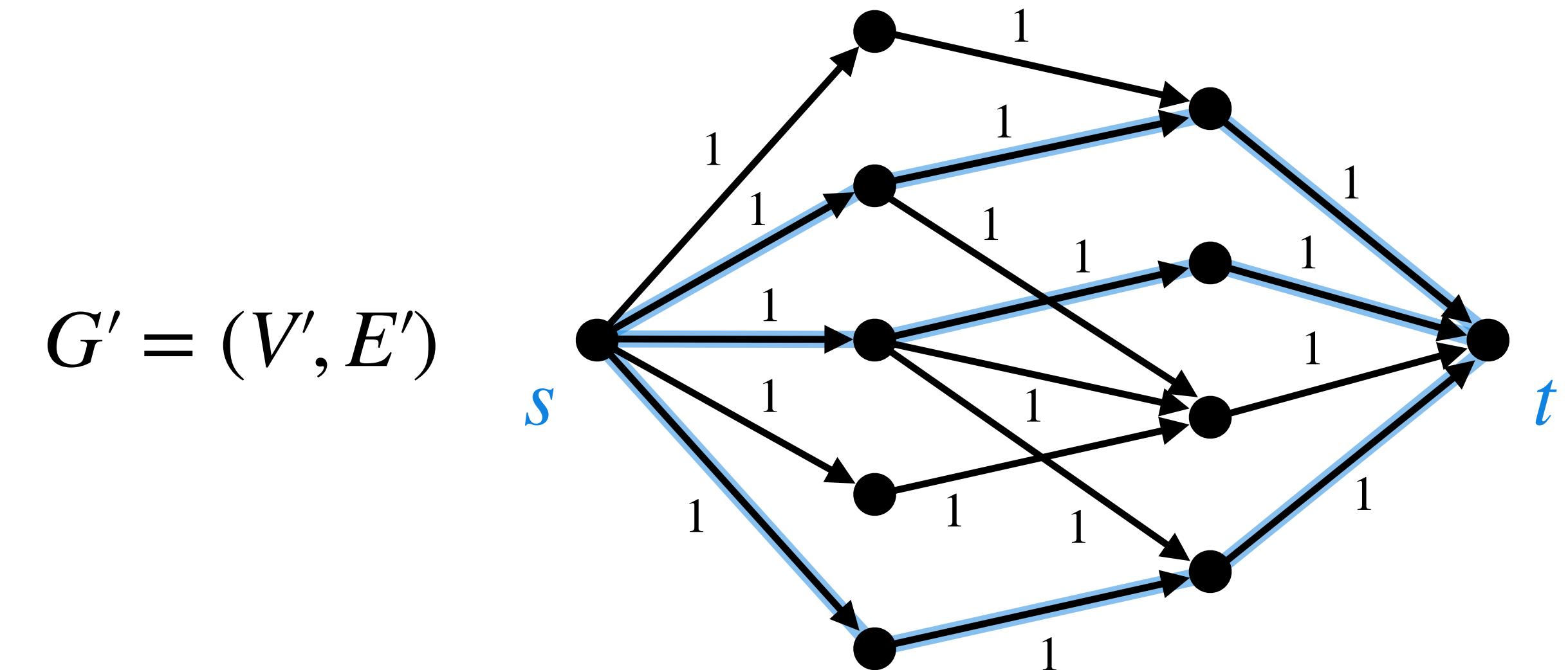
Proof:



Bipartite Matching to Flow

Claim: If f is an integer-valued flow in G' , then \exists a matching M of size $|f|$ in G .

Proof: M in G contains edges from L to R which have flow 1 in G' .

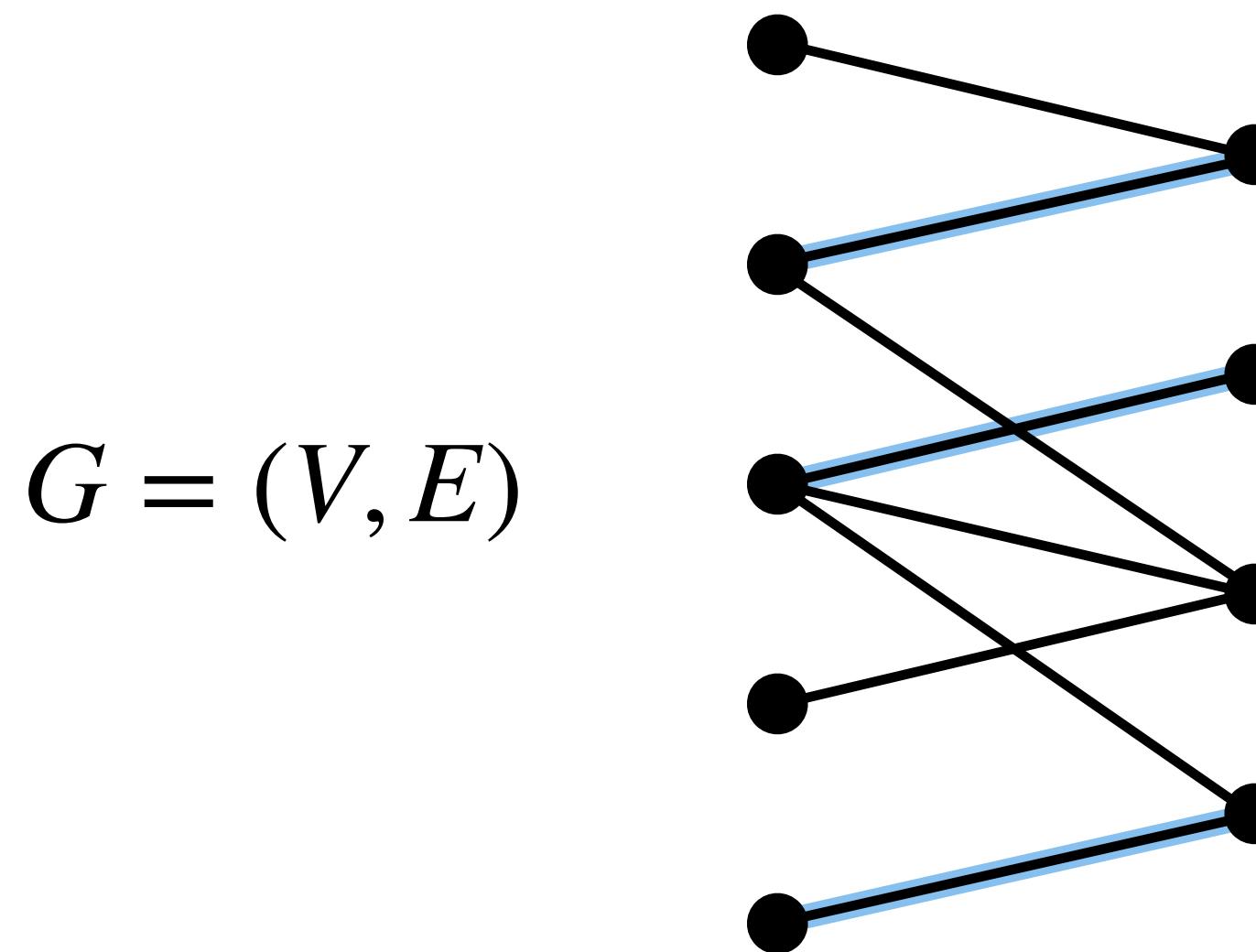
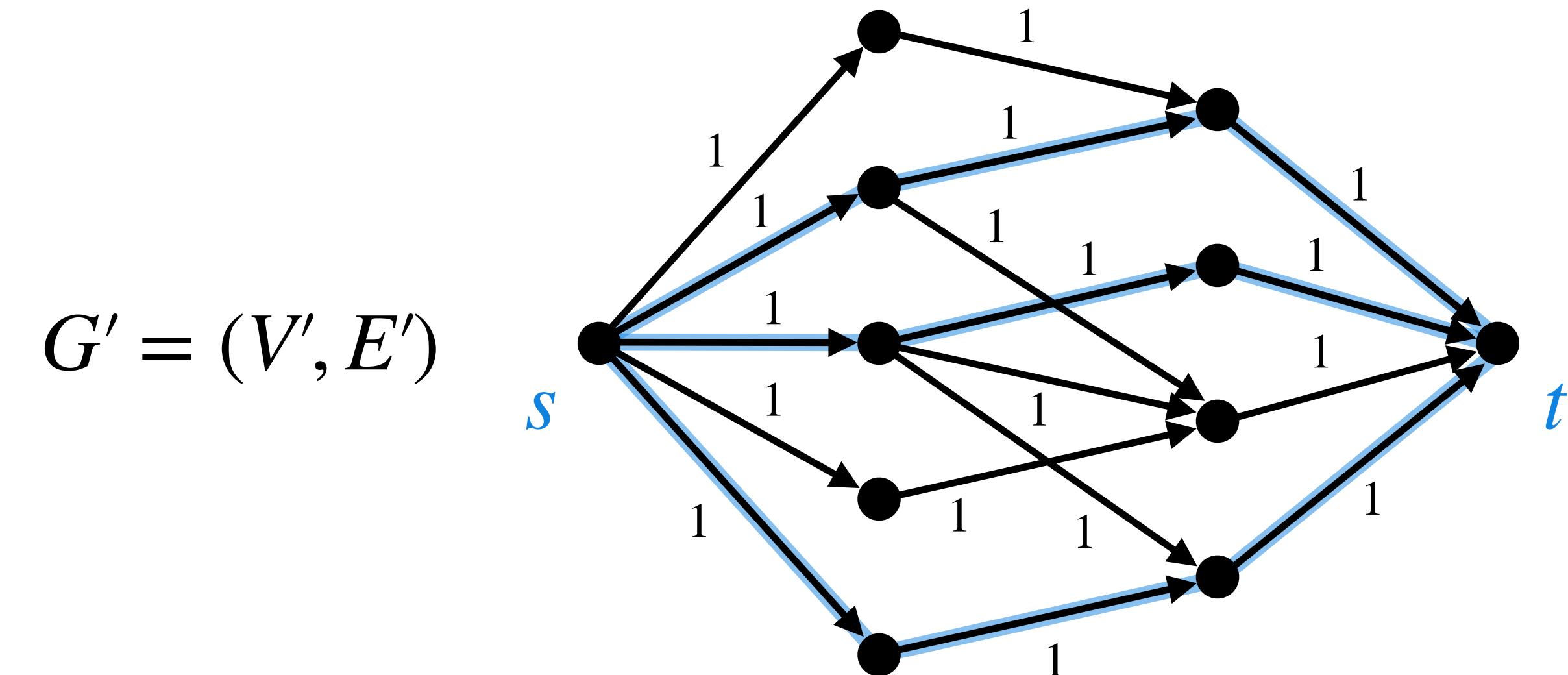


Bipartite Matching to Flow

Claim: If f is an integer-valued flow in G' , then \exists a matching M of size $|f|$ in G .

Proof: M in G contains edges from L to R which have flow 1 in G' .

Prove it yourself why M will be a matching of size $|f|$.



Bipartite Matching to Flow: Summary

Bipartite Matching to Flow: Summary

Let $G = (V, E)$ be a bipartite graph with partition (L, R) and let $G' = (V', E')$ be its corresponding flow network.

Bipartite Matching to Flow: Summary

Let $G = (V, E)$ be a bipartite graph with partition (L, R) and let $G' = (V', E')$ be its corresponding flow network.

Claim: If M is a matching in G , then there is an integer-valued f in G' with value $|f| = |M|$.

Bipartite Matching to Flow: Summary

Let $G = (V, E)$ be a bipartite graph with partition (L, R) and let $G' = (V', E')$ be its corresponding flow network.

Claim: If M is a matching in G , then there is an integer-valued f in G' with value $|f| = |M|$.

Claim: If f is an integer-valued flow in G' , then \exists a matching M of size $|f|$ in G .

Max Bipartite Matching to Max Flow

Max Bipartite Matching to Max Flow

Claim: Let $G = (V, E)$ be a bipartite graph with partition (L, R)

Max Bipartite Matching to Max Flow

Claim: Let $G = (V, E)$ be a bipartite graph with partition (L, R) and let $G' = (V', E')$ be its

Max Bipartite Matching to Max Flow

Claim: Let $G = (V, E)$ be a bipartite graph with partition (L, R) and let $G' = (V', E')$ be its corresponding flow network.

Max Bipartite Matching to Max Flow

Claim: Let $G = (V, E)$ be a bipartite graph with partition (L, R) and let $G' = (V', E')$ be its corresponding flow network. Let f be a maximum integer-valued flow in G' .

Max Bipartite Matching to Max Flow

Claim: Let $G = (V, E)$ be a bipartite graph with partition (L, R) and let $G' = (V', E')$ be its corresponding flow network. Let f be a maximum integer-valued flow in G' . Then, the matching

Max Bipartite Matching to Max Flow

Claim: Let $G = (V, E)$ be a bipartite graph with partition (L, R) and let $G' = (V', E')$ be its corresponding flow network. Let f be a maximum integer-valued flow in G' . Then, the matching M in G corresponding to f is a maximum matching.

Max Bipartite Matching to Max Flow

Claim: Let $G = (V, E)$ be a bipartite graph with partition (L, R) and let $G' = (V', E')$ be its corresponding flow network. Let f be a maximum integer-valued flow in G' . Then, the matching M in G corresponding to f is a maximum matching.

Proof:

Max Bipartite Matching to Max Flow

Claim: Let $G = (V, E)$ be a bipartite graph with partition (L, R) and let $G' = (V', E')$ be its corresponding flow network. Let f be a maximum integer-valued flow in G' . Then, the matching M in G corresponding to f is a maximum matching.

Proof: We know that $|M| = |f|$.

Max Bipartite Matching to Max Flow

Claim: Let $G = (V, E)$ be a bipartite graph with partition (L, R) and let $G' = (V', E')$ be its corresponding flow network. Let f be a maximum integer-valued flow in G' . Then, the matching M in G corresponding to f is a maximum matching.

Proof: We know that $|M| = |f|$.

Suppose M' not M is the maximum matching.

Max Bipartite Matching to Max Flow

Claim: Let $G = (V, E)$ be a bipartite graph with partition (L, R) and let $G' = (V', E')$ be its corresponding flow network. Let f be a maximum integer-valued flow in G' . Then, the matching M in G corresponding to f is a maximum matching.

Proof: We know that $|M| = |f|$.

Suppose M' not M is the maximum matching. Hence, $|M'| > |M|$.

Max Bipartite Matching to Max Flow

Claim: Let $G = (V, E)$ be a bipartite graph with partition (L, R) and let $G' = (V', E')$ be its corresponding flow network. Let f be a maximum integer-valued flow in G' . Then, the matching M in G corresponding to f is a maximum matching.

Proof: We know that $|M| = |f|$.

Suppose M' not M is the maximum matching. Hence, $|M'| > |M|$.

Let f' be the integer-valued flow in G' corresponding to M' .

Max Bipartite Matching to Max Flow

Claim: Let $G = (V, E)$ be a bipartite graph with partition (L, R) and let $G' = (V', E')$ be its corresponding flow network. Let f be a maximum integer-valued flow in G' . Then, the matching M in G corresponding to f is a maximum matching.

Proof: We know that $|M| = |f|$.

Suppose M' not M is the maximum matching. Hence, $|M'| > |M|$.

Let f' be the integer-valued flow in G' corresponding to M' .

We know that $|f'| = |M'|$.

Max Bipartite Matching to Max Flow

Claim: Let $G = (V, E)$ be a bipartite graph with partition (L, R) and let $G' = (V', E')$ be its corresponding flow network. Let f be a maximum integer-valued flow in G' . Then, the matching M in G corresponding to f is a maximum matching.

Proof: We know that $|M| = |f|$.

Suppose M' not M is the maximum matching. Hence, $|M'| > |M|$.

Let f' be the integer-valued flow in G' corresponding to M' .

We know that $|f'| = |M'|$. Hence, $|f'| > |f|$.

Max Bipartite Matching to Max Flow

Claim: Let $G = (V, E)$ be a bipartite graph with partition (L, R) and let $G' = (V', E')$ be its corresponding flow network. Let f be a maximum integer-valued flow in G' . Then, the matching M in G corresponding to f is a maximum matching.

Proof: We know that $|M| = |f|$.

Suppose M' not M is the maximum matching. Hence, $|M'| > |M|$.

Let f' be the integer-valued flow in G' corresponding to M' .

We know that $|f'| = |M'|$. Hence, $|f'| > |f|$.

This is a contradiction as f is a maximum integer-valued flow.

Max Bipartite Matching to Max Flow

Claim: Let $G = (V, E)$ be a bipartite graph with partition (L, R) and let $G' = (V', E')$ be its corresponding flow network. Let f be a maximum integer-valued flow in G' . Then, the matching M in G corresponding to f is a maximum matching.

Proof: We know that $|M| = |f|$.

Suppose M' not M is the maximum matching. Hence, $|M'| > |M|$.

Let f' be the integer-valued flow in G' corresponding to M' .

We know that $|f'| = |M'|$. Hence, $|f'| > |f|$.

This is a contradiction as f is a maximum integer-valued flow.

■

Solving Max-Bipartite-Matching via Max-flow

Solving Max-Bipartite-Matching via Max-flow

Max-Bipartite-Matching(G):

Solving Max-Bipartite-Matching via Max-flow

Max-Bipartite-Matching(G):

1. Construct corresponding flow network G'

Solving Max-Bipartite-Matching via Max-flow

Max-Bipartite-Matching(G):

1. Construct corresponding flow network G'
2. Find max-flow in G' using Ford-Fulkerson

Solving Max-Bipartite-Matching via Max-flow

Max-Bipartite-Matching(G):

1. Construct corresponding flow network G'
2. Find max-flow in G' using Ford-Fulkerson
3. **return** $\{(u, v) \mid u \in L, v \in R, f(u, v) = 1\}$

Solving Max-Bipartite-Matching via Max-flow

Max-Bipartite-Matching(G):

1. Construct corresponding flow network G'
2. Find max-flow in G' using Ford-Fulkerson
3. **return** $\{(u, v) \mid u \in L, v \in R, f(u, v) = 1\}$

Correctness: Proof follows from the previous claim.

Solving Max-Bipartite-Matching via Max-flow

Max-Bipartite-Matching(G):

1. Construct corresponding flow network G'
2. Find max-flow in G' using Ford-Fulkerson
3. **return** $\{(u, v) \mid u \in L, v \in R, f(u, v) = 1\}$

Correctness: Proof follows from the previous claim.

What if the flow produced has fractional values?