Lecture 20

Bipartite Maximum Matching

Source: Introduction to Algorithms, CLRS and Kleinberg & Tardos
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Defn: A matching M is maximum if there is no matching M’ such that |M | < |M’|.
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Bipartite Graphs

Defn: A graph G is bipartite if the vertex set of G can be split into disjoint sets A and B

such that each edge of G is incident on one vertex in A and one vertex in B.
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Maximum Bipartite Matching in Jobs

Suppose there are 5 job openings and 6 applicants. We want to fill each job opening by

hiring exactly one applicant and one applicant can do at most one job.

Ji 2 I3 Js s
Jobs

‘\ \ At most how many jobs can be filled?

(Or what's the size of maximum matching?)

Applicants
a, a, a3 a, das dg
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Maximum Bipartite Matching in Matchmaking

Suppose there are 5 girls and 6 boys. We want to form couples based on interest shown

between a boy and a girl assuming monogamous setup.

1 82 83 84 85
Girls

‘ ¥~ At most how many couples can be formed?

(Or what's the size of maximum matching?)

Boys
b, b, by, b, bs b,
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Maximum Bipartite Matching in Factories

Suppose there are 5 machine and 6 tasks. Each machine can do one task at a time and one task

can be done by at most one machine.

m; m, ms my MNs
Machines

. ¥~ At most how many tasks can be done in parallel?

(Or what's the size of maximum matching?)
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Maximum Bipartite Matching

Max-Bipartite-Matching:
<«—— Has a surprising connection to Max-flow.

Input: A bipartite graph G.
Output: Maximum matching in G.
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network G' = (V', E’), where:

o V' =VU/{s,t}, where s is the source and 7 is the sink.
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Bipartite Matching to Flow

For a bipartite graph G = (V, E) with partition (L, R) we construct the corresponding tlow
network G' = (V', E’), where:

o V' =VU/{s,t}, where s is the source and 7 is the sink.
o F'={(s,u):uelLlu{u,v):uelLveR {uvleEtu{t:veER}

® Every edge has capacity one.
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Bipartite Matching to Flow

Goal: We want a way to compute maximum matching in G by computing max-flow in G".
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Claim: If M is a matching in G, then there is an integer-valued f in G’ with value |f| = [ M].

\

Flow where f(u, v) is an integer for every (u, v).

I o X
G = (V,E) G = (V,E) 11 .

\) 1 1
1 o 1 1
@

1

’



Bipartite Matching to Flow

Claim: If M is a matching in G, then there is an integer-valued f in G’ with value |f| = [ M].

I o X
G = (V,E) G = (V,E) 11 o

s ! — f
1 o 1 1
@

1

’



Bipartite Matching to Flow

Claim: If M is a matching in G, then there is an integer-valued f in G’ with value |f| = [ M].

1

1 ! > i
e
G = (V,E) G' = (V,E) e, e

\) 1 1
1 o 1 1
@

1




Bipartite Matching to Flow

Claim: If M is a matching in G, then there is an integer-valued f in G’ with value |f| = [ M].

G=(V,E)




Bipartite Matching to Flow

Claim: If M is a matching in G, then there is an integer-valued f in G’ with value |f| = [ M].

G=(V,E)




Bipartite Matching to Flow

Claim: If M is a matching in G, then there is an integer-valued f in G’ with value |f| = [ M].

G=(V,E)




Bipartite Matching to Flow

Claim: If M is a matching in G, then there is an integer-valued f in G’ with value |f| = [ M].

Proof:

G=(V,E)




Bipartite Matching to Flow

Claim: If M is a matching in G, then there is an integer-valued f in G’ with value |f| = [ M].
Proof: Consider the following flow f such that |f| = |M|:

G=(V,E)




Bipartite Matching to Flow

Claim: If M is a matching in G, then there is an integer-valued f in G’ with value |f| = [ M].
Proof: Consider the following flow f such that |f| = |M|:
o It (u,v) € M, then f(u,v) = f(s,u) = f(v,t) =1
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Claim: If M is a matching in G, then there is an integer-valued f in G’ with value |f| = [ M].
Proof: Consider the following flow f such that |f| = |M|:

o It (u,v) € M, then f(u,v) = f(s,u) = f(v,t) =1

® For other (u,v) edges in E’, f(u,v) = 0.

G=(V,E) G =(V,E"




Bipartite Matching to Flow

/

G=(V,E)

’



Bipartite Matching to Flow

Claim: If f is an integer-valued flow in G', then 3 a matching M ot size |f| in G .
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Claim: If f is an integer-valued flow in G', then 3 a matching M ot size |f| in G .

Proof:

Can two edges with flow one
from L to R have a common vertex?
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Claim: If f is an integer-valued flow in G', then 3 a matching M ot size |f| in G .

Proof:
| M| = # of edges from L to R with flow 1
Pick corresponding edges to those
who have flow 1 from L to R.
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Claim: If f is an integer-valued flow in G', then 3 a matching M ot size |f| in G .

Proof:
| M| = # of edges from L to R with flow 1 = net flow across cut (s UL,R U ?)
Pick corresponding edges to those
who have flow 1 from L to R.
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Claim: If f is an integer-valued flow in G', then 3 a matching M ot size |f| in G .
Proof: M in G contains edges from L to R which have flow 1 in G".
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Claim: If f is an integer-valued flow in G', then 3 a matching M ot size |f| in G .
Proof: M in G contains edges from L to R which have flow 1 in G".

\

Prove it yourself why M will be a matching of size |f].

G=(V,E)
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Bipartite Matching to Flow: Summary

Let G = (V, E) be a bipartite graph with partition (L, R) and let G' = (V', ) be its

corresponding flow network.

Claim: If M is a matching in G, then there is an integer-valued f in G' with value | f| = | M].

Claim: If f is an integer-valued flow in G, then d a matching M ot size |f| in G .
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Claim: Let G = (V. E) be a bipartite graph with partition (L, R) and let G' = (V', E’) be its
corresponding flow network. Let f be a maximum integer-valued flow in GG". Then, the matching

M in G corresponding to [ is a maximum matching.

Proof: We know that | M| = |f].

Suppose M’ not M is the maximum matching. Hence, |M'| > |M|.
Let /" be the integer-valued flow in G' corresponding to M.

We know that |f'| = |M’|. Hence, |f| > |f].

This is a contradiction as / is a maximum integer-valued flow.
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Solving Max-Bipartite-Matching via Max-flow

Max-Bipartite-Matching(G):
1. Construct corresponding flow network G’
2. Find max-flow in G’ using Ford-Fulkerson

3. return {(u,v) |lue L,v €R, f(u,v) =1}

Correctness: Proof follows from the previous claim.

\

What if the flow produced has fractional values?



