
Lecture 20

Bipartite Maximum Matching

Source: Introduction to Algorithms, CLRS and Kleinberg & Tardos
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Bipartite Graphs

A B

Defn: A graph  is bipartite if the vertex set of  can be split into disjoint sets  and  G G A B
such that each edge of  is incident on one vertex in  and one vertex in . G A B
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hiring exactly one applicant and one applicant can do at most one job. 
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Maximum Bipartite Matching

Max-Bipartite-Matching:

     Input: A bipartite graph .G
     Output: Maximum matching in .G

Has a surprising connection to Max-flow. 
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G = (V, E) G′￼ = (V′￼, E′￼)

For a bipartite graph  with partition  we construct the corresponding flow G = (V, E) (L, R)
network , where:G′￼ = (V′￼, E′￼)

• , where  is the source and  is the sink.V′￼ = V ∪ {s, t} s t

• E′￼ = {(s, u) : u ∈ L}  ∪ {(u, v) : u ∈ L, v ∈ R, {u, v} ∈ E}  ∪ {(v, t) : v ∈ R}
• Every edge has capacity one.
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Bipartite Matching to Flow

Goal: We want a way to compute maximum matching in  by computing max-flow in .G G′￼

G = (V, E) G′￼ = (V′￼, E′￼)
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• For other  edges in , .(u, v) E′￼ f(u, v) = 0
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 Max-Bipartite-Matching :           (G)
 1.    Construct corresponding flow network G′￼

 2.    Find max-flow in  using Ford-FulkersonG′￼

 3.    return {(u, v) ∣ u ∈ L, v ∈ R, f(u, v) = 1}

Correctness: Proof follows from the previous claim.

What if the flow produced has fractional values? 


